Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CNIO researchers discover 1 of the genetic pieces of bladder cancer


Notch genes are a double-edged sword: in some cancers they have a harmful effect because they promote tumour growth, whilst in others they act as tumour suppressors. The reason is still unclear, making it impossible to predict the behaviour of Notch within each tumour, and complicating its use as a drug target.

Now, CNIO researchers clear this dilemma up for bladder cancer, in which it exerts an anti-tumour effect. This result calls for caution when using therapeutic strategies based on the deactivation of Notch, because they could increase the risk of developing bladder cancer.

This image shows a squamous-cell bladder carcinoma from Notch-deficient mice.

Credit: ASCI

The study, published by The Journal of Clinical Investigation, is a joint effort between CNIO's Tumour Suppression and Epithelial Carcinogenesis Groups, led by Manuel Serrano and Francisco X. Real, respectively. In addition to clarifying the role that Notch plays in bladder cancer--the fifth most frequent cancer among men in developed countries--the authors offer clues to understand the dual function of this family of genes.

"Our analysis of Notch mutations in bladder cancer, mouse models, cell-based assays and human cancer samples offer solid evidence that the Notch pathway plays a relevant role as a tumour suppressor in bladder cancer," they write.

This result is not a surprise. Many of the tumours in which Notch acts as a suppressor are cancers that arise in squamous cells, which are found in different organs, such as the oesophagus or the skin. The urinary bladder can give rise to squamous cell cancer, so "we hypothesized that Notch could act as a suppressor in this tissue," explains the article.

The confirmation of this hypothesis supports the idea that Notch intervenes in the architecture of the so-called stratified epithelia, in which cells grow in superimposed layers --a type of growth that also takes place in the bladder.

The researchers from the two CNIO groups brought together their strength and expertise. The Epithelial Carcinogenesis Group had sequenced the exome--the part of the genome that is translated into proteins--for 17 bladder cancers, and detected Notch mutations. The Tumour Suppression Group provided mouse models for the genetic inactivation of Notch, specifically in the bladder.

The study concludes with a call for caution: "Our group as well as other investigators had previously described the anti-tumour effects of pharmacologic inhibitors of Notch in pre-clinical models [of lung adenocarcinoma, where Notch is oncogenic]; our current data suggest that caution must be taken in the clinical application of non-specific Notch pathway inhibition, because it could increase the incidence of squamous-type tumours, like in the bladder."


The work has been funded by the Ministry of Economy and Competitiveness, the European Union and the European Research Council (ERC), the Community of Madrid, the Botin Foundation, the Ramon Areces Foundation, the AXA Foundation and the Spanish Association Against Cancer.

Reference article:

NOTCH pathway inactivation promotes bladder cancer progression. Antonio Maraver, Pablo J. Fernandez-Marcos, Timothy P. Cash, Marinela Mendez-Pertuz, Marta Duenas, Paolo Maietta,Paola Martinelli, Maribel Munoz-Martin, Monica Martinez-Fernandez,Marta Canamero, Giovanna Roncador, Jorge L. Martinez-Torrecuadrada, Dimitrios Grivas, Jose Luis de la Pompa, Alfonso Valencia, Jesus M. Paramio, Francisco X. Real, Manuel Serrano. The Journal of Clinical Investigation (2015). doi: 10.1172/JCI78185.

Nuria Noriega | EurekAlert!

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>