Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CNIO researchers discover 1 of the genetic pieces of bladder cancer

12.01.2015

Notch genes are a double-edged sword: in some cancers they have a harmful effect because they promote tumour growth, whilst in others they act as tumour suppressors. The reason is still unclear, making it impossible to predict the behaviour of Notch within each tumour, and complicating its use as a drug target.

Now, CNIO researchers clear this dilemma up for bladder cancer, in which it exerts an anti-tumour effect. This result calls for caution when using therapeutic strategies based on the deactivation of Notch, because they could increase the risk of developing bladder cancer.


This image shows a squamous-cell bladder carcinoma from Notch-deficient mice.

Credit: ASCI

The study, published by The Journal of Clinical Investigation, is a joint effort between CNIO's Tumour Suppression and Epithelial Carcinogenesis Groups, led by Manuel Serrano and Francisco X. Real, respectively. In addition to clarifying the role that Notch plays in bladder cancer--the fifth most frequent cancer among men in developed countries--the authors offer clues to understand the dual function of this family of genes.

"Our analysis of Notch mutations in bladder cancer, mouse models, cell-based assays and human cancer samples offer solid evidence that the Notch pathway plays a relevant role as a tumour suppressor in bladder cancer," they write.

This result is not a surprise. Many of the tumours in which Notch acts as a suppressor are cancers that arise in squamous cells, which are found in different organs, such as the oesophagus or the skin. The urinary bladder can give rise to squamous cell cancer, so "we hypothesized that Notch could act as a suppressor in this tissue," explains the article.

The confirmation of this hypothesis supports the idea that Notch intervenes in the architecture of the so-called stratified epithelia, in which cells grow in superimposed layers --a type of growth that also takes place in the bladder.

The researchers from the two CNIO groups brought together their strength and expertise. The Epithelial Carcinogenesis Group had sequenced the exome--the part of the genome that is translated into proteins--for 17 bladder cancers, and detected Notch mutations. The Tumour Suppression Group provided mouse models for the genetic inactivation of Notch, specifically in the bladder.

The study concludes with a call for caution: "Our group as well as other investigators had previously described the anti-tumour effects of pharmacologic inhibitors of Notch in pre-clinical models [of lung adenocarcinoma, where Notch is oncogenic]; our current data suggest that caution must be taken in the clinical application of non-specific Notch pathway inhibition, because it could increase the incidence of squamous-type tumours, like in the bladder."

###

The work has been funded by the Ministry of Economy and Competitiveness, the European Union and the European Research Council (ERC), the Community of Madrid, the Botin Foundation, the Ramon Areces Foundation, the AXA Foundation and the Spanish Association Against Cancer.

Reference article:

NOTCH pathway inactivation promotes bladder cancer progression. Antonio Maraver, Pablo J. Fernandez-Marcos, Timothy P. Cash, Marinela Mendez-Pertuz, Marta Duenas, Paolo Maietta,Paola Martinelli, Maribel Munoz-Martin, Monica Martinez-Fernandez,Marta Canamero, Giovanna Roncador, Jorge L. Martinez-Torrecuadrada, Dimitrios Grivas, Jose Luis de la Pompa, Alfonso Valencia, Jesus M. Paramio, Francisco X. Real, Manuel Serrano. The Journal of Clinical Investigation (2015). doi: 10.1172/JCI78185.

Nuria Noriega | EurekAlert!

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>