Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues point to cause of a rare fat-distribution disease

21.03.2013
Novel modification of structural protein implicated

Studying a protein that gives structure to the nucleus of cells, Johns Hopkins researchers stumbled upon mutations associated with familial partial lipodystrophy (FPLD), a rare disease that disrupts normal patterns of fat distribution throughout the body.

"Our findings open new paths for learning how and why fat cells are disproportionately affected by mutations in the protein lamin A, which is found in the nucleus of most cells of the body," says Katherine Wilson, Ph.D., professor of cell biology at the Johns Hopkins University School of Medicine.

According to the researchers, this is the first report that another protein, SUMO1, can attach to lamin A. Importantly, they found that FPLD-causing mutations in lamin A prevent this attachment. Details of the study were published in the Feb. 1 issue of the journal Molecular Biology of the Cell.

Wilson says lamin A is primarily known for giving shape to the nucleus. "It forms networks of strong 'cables' at the nuclear membrane and works with other proteins to create and maintain the three-dimensional environment in which chromosomes are properly organized, protected and expressed," she says.

When the Wilson group made their discovery, they were studying lamin A binding to another protein, actin. Actin can sometimes form a complex with certain SUMO proteins, small proteins often attached to other proteins to alter their functions, their locations and their interactions with additional proteins.

"Sometimes you go into an experiment looking for one thing but you find another," says Wilson. "We wanted to know if lamin A could bind to actin-SUMO1 complexes. Instead, we found that SUMO1 itself attaches to lamin A."

SUMO1 is usually attached to proteins at sites with certain properties; these sites can be predicted by the surrounding amino acids, the basic building blocks of proteins whose blueprints are found in genes. So the researchers searched lamin A's amino acid sequence for predicted binding sites and found five. Using targeted genetic techniques, they created lamin A variants, each with a mutation at a different predicted SUMO1 attachment site. They then added SUMO1 to the mutants and tested whether it could attach to them or not.

Two mutations significantly decreased SUMO1 attachment. One was at a predicted site; the other was unexpectedly in their comparison "control" variant. "Since the mutation site in our control variant was not a predicted SUMO1 attachment site, we were curious about it," explains Wilson. "Mutations in lamin A cause more than 15 different diseases, so we checked the genetic database to see if any diseases were associated with mutations near the SUMO1 attachment site, and FPLD leapt out like a neon sign."

FPLD is a very rare condition that starts around puberty. Fat on the legs of patients is reduced while it accumulates at other locations, including the neck and face. Patients can also become diabetic.

Twenty-four different mutations in lamin A can cause FPLD. To see if two other FPLD-causing mutations near the SUMO1 attachment site affected SUMO1 attachment, the team created these variants and tested them as before. One of the new variants did show decreased SUMO1 attachment. Based on the location of that mutation and one of the other SUMO1-disrupting mutations, the researchers were able to identify a "patch" on the surface of the lamin A protein that is important for SUMO1 attachment.

Exactly how lamin A and SUMO1 connect to FPLD is still a mystery. "We can only speculate on how lamin A and SUMO1 work together to regulate fat cells," says Wilson. "But these results raise new research questions that will hopefully move FPLD studies forward."

Other authors of the report include Dan Simon of the Johns Hopkins University School of Medicine and Tera Domaradzki and Wilma Hofmann of the University at Buffalo, The State University of New York.

This work was supported by grants from the National Institute of General Medical Sciences (RO1 GM048646) and the Department of Defense CDMRP (PC111523).

On the Web:

Link to article: http://dx.doi.org/10.1091/mbc.E12-07-0527

Wilson Lab: http://www.hopkinsmedicine.org/cellbio/dept/WilsonProfile.html

Related stories:

Promising Pursuits: Name That Field (the final story of the article) http://www.hopkinsmedicine.org/news/publications/johns_hopkins_health/spring_2011/promising_pursuits

Media Relations and Public Affairs
Media Contacts: Catherine Kolf; 443-287-2251; ckolf@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu
Shawna Williams; 410-955-8236; shawna@jhmi.edu

Catherine Kolf | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>