Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to chromosome crossovers

14.02.2013
Neil Hunter’s laboratory in the UC Davis College of Biological Sciences has placed another piece in the puzzle of how sexual reproduction shuffles genes while making sure sperm and eggs get the right number of chromosomes.
The basis of sexual reproduction is that a fertilized egg gets half its chromosomes from each parent — sperm and eggs each contributing one partner in each pair of chromosomes. We humans have 23 pairs of 46 chromosomes: so our sperm or eggs have 23 chromosomes each.

Before we get to the sex part, though, those sperm and eggs have to be formed from regular body cells that contain twice as many chromosomes. That happens through a specialized type of cell division, meiosis.

During meiosis, the couples in each pair of chromosomes have to, well, couple by “crossing over” with each other. Each chromosome pair must become connected by at least one crossover so that when the couples separate, they are delivered to separate sperm or egg cells.

These crossovers also mean that chromosomes can exchange chunks of DNA with each other, shuffling the genetic deck for the next generation. But if too few crossovers are formed, gametes end up with the wrong number for chromosomes, a situation that can cause infertility, pregnancy miscarriage or chromosomal diseases such as Down Syndrome.

Large-scale studies of human genetics have shown that the number of crossovers formed during meiosis is under genetic control. Moreover, women that make more crossovers tend to have more children. One gene suggested to control crossover numbers in humans, called Rnf212, is the subject of a new study by UC Davis researchers lead by Professor Neil Hunter.

Hunter studies how crossovers form and chromosomes separate at the UC Davis Department of Microbiology & Molecular Genetics and the Comprehensive Cancer Center. In 2009, he was awarded an early career fellowship from the Howard Hughes Medical Institute.

The latest paper from Hunter’s lab, published Feb. 10 in Nature Genetics, shows that Rnf212 is essential for crossing-over in mammalian cells. Crossovers form by a process called homologous recombination, in which chromosomes are first broken and then repaired by coupling with a matching template chromosome. Although hundreds of recombination events are started in each cell, only one or two crossovers will form between any given pair of chromosomes.

“There isn’t a special, predetermined site for a crossover. It can occur just about anywhere along a chromosome. But there has to be at least one and there always is,” Hunter said.

In a series of experiments in mouse cells, graduate student April Reynolds, Hunter and colleagues found that the RNF212 protein defines where crossovers will occur by binding to just one or two recombination sites per chromosome where it triggers the accumulation of the protein machinery that actually carries out the cutting and splicing of DNA.

Mice that lacked the gene for RNF212 were sterile. Mice that had one working copy of the gene were fertile, but on careful examination there were fewer crossovers formed while sperm and eggs were being made than in normal mice, potentially reducing fertility. It’s possible that this might be tied to some causes of infertility in humans.

It remains unclear how each pair of chromosomes always manages to crossover at least once. But Hunter says he is, “convinced that RNF212 holds the key to understanding this unique problem in chromosome biology.”

The full author list of the paper is: April Reynolds, Huanyu Qiao, Ye Yang, Jefferson Chen, Neil Jackson, and Kajal Biswas, all in Hunter’s laboratory at UC Davis; J Kim Holloway, Cornell University; Frédéric Baudat and Bernard de Massy, Centre National de Recherche Scientifique, Montpellier, France; Jeremy Wang, University of Pennsylvania; Christer Höög, Karolinska Institutet, Stockholm, Sweden; Paula Cohen, Cornell University; & Neil Hunter.

The work was supported by NIH and HHMI.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>