Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


More Clues About Why Chimps and Humans Are Genetically Different

Ninety-six percent of a chimpanzee’s genome is the same as a human’s. It’s the other 4 percent, and the vast differences, that pique the interest of Georgia Tech’s Soojin Yi. For instance, why do humans have a high risk of cancer, even though chimps rarely develop the disease?

In research published in September’s American Journal of Human Genetics, Yi looked at brain samples of each species. She found that differences in certain DNA modifications, called methylation, may contribute to phenotypic changes. The results also hint that DNA methylation plays an important role for some disease-related phenotypes in humans, including cancer and autism.

“Our study indicates that certain human diseases may have evolutionary epigenetic origins,” says Yi, a faculty member in the School of Biology. “Such findings, in the long term, may help to develop better therapeutic targets or means for some human diseases. “

DNA methylation modifies gene expression but doesn’t change a cell’s genetic information. To understand how it differs between the two species, Yi and her research team generated genome-wide methylation maps of the prefrontal cortex of multiple humans and chimps. They found hundreds of genes that exhibit significantly lower levels of methylation in the human brain than in the chimpanzee brain. Most of them were promoters involved with protein binding and cellular metabolic processes.

“This list of genes includes disproportionately high numbers of those related to diseases,” said Yi. “They are linked to autism, neural-tube defects and alcohol and other chemical dependencies. This suggests that methylation differences between the species might have significant functional consequences. They also might be linked to the evolution of our vulnerability to certain diseases, including cancer.”

Yi, graduate student Jia Zeng and postdoctoral researcher Brendan Hunt worked with a team of researchers from Emory University and UCLA. The Yerkes National Primate Research Center provided the animal samples used in the study. It was also funded by the Georgia Tech Fund for Innovation in Research and Education (GT-FIRE) and National Science Foundation grants (MCB-0950896 and BCS-0751481). The content is solely the responsibility of the principal investigators and does not necessarily represent the official views of the NSF.

Jason Maderer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>