Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to cancer pathogenesis found in cell-conditioned media

10.02.2014
Twenty proteins specifically secreted by primary effusion lymphoma cell lines identified, according to new research published in The American Journal of Pathology

Primary effusion lymphoma (PEL) is a rare B-cell neoplasm distinguished by its tendency to spread along the thin serous membranes that line body cavities without infiltrating or destroying nearby tissue.

By growing PEL cells in culture and analyzing the secretome (proteins secreted into cell-conditioned media), investigators have identified proteins that may explain PEL pathogenesis, its peculiar cell adhesion, and migration patterns. They also recognized related oncogenic pathways, thereby providing rationales for more individualized treatment. The results are published in The American Journal of Pathology.

A biomarker is a biological molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal process, a condition, or disease, and can help develop personalized therapeutic approaches for patients. Analysis of secretomes is a new strategy for discovering biomarkers involved in cancer pathogenesis based on the reasoning that these fluids will be enriched in proteins secreted by cancer cells, shed from cancer cell surfaces, or released from the interior of cells (through vesiculation, cell lysis, apoptosis, or necrosis). The content of the secretome may reflect the functional state of the cells at a specific time point.

In this study, investigators from the Istituto Nazionale dei Tumori of Milan and the Centro di Riferimento Oncologico of Aviano, Italy, analyzed secretomes from four established PEL cell lines (CRO-AP2, CRO-AP3, CRO-AP5, and CRO-AP6; established in the laboratories directed by Antonino Carbone, MD) as well as from four PEL clinical samples and three primary solid lymphomas. PEL tumor cells are characterized by Kaposi's sarcoma-associated herpesvirus (KSHV) infection, and the primary solid lymphomas were also KSHV-positive.

Protein content was measured using two complementary mass spectrometry platforms. The experiments allowed cells to grow for 16 to 18 hours and were performed under serum-free conditions to increase the ability to detect secreted proteins. Of 266 identified proteins, 139 (52%) were secreted and 127 were considered to have an intracellular origin or were secreted in an unconventional fashion. "Most of the proteins we recognized in the secretome of PEL are new with respect to previous studies utilizing conventional proteomic analysis and gene expression profiling," said Annunziata Gloghini, PhD, of the Department of Pathology of the Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy.

"Importantly, 27 proteins were shared by secretomes from all PEL cell lines," added Dr. Gloghini. The researchers found that the PEL secretomes were enriched with proteins specifically involved in inflammation and the immune response (eg, HMGB1, GRAA, and PCBP2) and cell growth (eg, LEG1, STMN1, and S10A6). Other proteins play roles in mRNA processing (eg, ANM1 and PCBP2) or cell structure, adhesion, migration, and organization (eg, EZRI, MOES). Some proteins have enzymatic activity (eg, CATA and GSTK1).

Comparison of secretomes from PEL with those from other tumor cell lines identified 20 proteins specific to the PEL cell lines. This suggests that secretome profiling provides a source of tumor biomarkers and may ultimately improve patient management.

The investigators also investigated the association between the proteins found in the PEL secretome and biological function. Using pathway/network enrichment analysis, they found that the pathways most activated in PEL cell lines were involved with regulation of autophagy (an intracellular catabolic mechanism) through LRRK2-mediated signaling pathways and with apoptosis and survival through granzyme A signal. "The extracellular functions of granzyme A might be involved in the particular tropism of PEL and its cell growth," says Italia Bongarzone, PhD, of the Department of Experimental Oncology and Molecular Medicine of the Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy. "Further studies are needed to confirm and validate the importance of these pathways/processes and their roles in lymphoma tumorigenesis and progression."

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

Further reports about: IRCCS PCBP2 PEL cell growth cell surface cellular function signaling pathway

More articles from Life Sciences:

nachricht Tracking the American Woodcock
28.07.2015 | University of Arkansas, Fayetteville

nachricht Possible Path Toward First Anti-MERS Drugs
28.07.2015 | American Crystallographic Association (ACA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>