Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to cancer pathogenesis found in cell-conditioned media

10.02.2014
Twenty proteins specifically secreted by primary effusion lymphoma cell lines identified, according to new research published in The American Journal of Pathology

Primary effusion lymphoma (PEL) is a rare B-cell neoplasm distinguished by its tendency to spread along the thin serous membranes that line body cavities without infiltrating or destroying nearby tissue.

By growing PEL cells in culture and analyzing the secretome (proteins secreted into cell-conditioned media), investigators have identified proteins that may explain PEL pathogenesis, its peculiar cell adhesion, and migration patterns. They also recognized related oncogenic pathways, thereby providing rationales for more individualized treatment. The results are published in The American Journal of Pathology.

A biomarker is a biological molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal process, a condition, or disease, and can help develop personalized therapeutic approaches for patients. Analysis of secretomes is a new strategy for discovering biomarkers involved in cancer pathogenesis based on the reasoning that these fluids will be enriched in proteins secreted by cancer cells, shed from cancer cell surfaces, or released from the interior of cells (through vesiculation, cell lysis, apoptosis, or necrosis). The content of the secretome may reflect the functional state of the cells at a specific time point.

In this study, investigators from the Istituto Nazionale dei Tumori of Milan and the Centro di Riferimento Oncologico of Aviano, Italy, analyzed secretomes from four established PEL cell lines (CRO-AP2, CRO-AP3, CRO-AP5, and CRO-AP6; established in the laboratories directed by Antonino Carbone, MD) as well as from four PEL clinical samples and three primary solid lymphomas. PEL tumor cells are characterized by Kaposi's sarcoma-associated herpesvirus (KSHV) infection, and the primary solid lymphomas were also KSHV-positive.

Protein content was measured using two complementary mass spectrometry platforms. The experiments allowed cells to grow for 16 to 18 hours and were performed under serum-free conditions to increase the ability to detect secreted proteins. Of 266 identified proteins, 139 (52%) were secreted and 127 were considered to have an intracellular origin or were secreted in an unconventional fashion. "Most of the proteins we recognized in the secretome of PEL are new with respect to previous studies utilizing conventional proteomic analysis and gene expression profiling," said Annunziata Gloghini, PhD, of the Department of Pathology of the Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy.

"Importantly, 27 proteins were shared by secretomes from all PEL cell lines," added Dr. Gloghini. The researchers found that the PEL secretomes were enriched with proteins specifically involved in inflammation and the immune response (eg, HMGB1, GRAA, and PCBP2) and cell growth (eg, LEG1, STMN1, and S10A6). Other proteins play roles in mRNA processing (eg, ANM1 and PCBP2) or cell structure, adhesion, migration, and organization (eg, EZRI, MOES). Some proteins have enzymatic activity (eg, CATA and GSTK1).

Comparison of secretomes from PEL with those from other tumor cell lines identified 20 proteins specific to the PEL cell lines. This suggests that secretome profiling provides a source of tumor biomarkers and may ultimately improve patient management.

The investigators also investigated the association between the proteins found in the PEL secretome and biological function. Using pathway/network enrichment analysis, they found that the pathways most activated in PEL cell lines were involved with regulation of autophagy (an intracellular catabolic mechanism) through LRRK2-mediated signaling pathways and with apoptosis and survival through granzyme A signal. "The extracellular functions of granzyme A might be involved in the particular tropism of PEL and its cell growth," says Italia Bongarzone, PhD, of the Department of Experimental Oncology and Molecular Medicine of the Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy. "Further studies are needed to confirm and validate the importance of these pathways/processes and their roles in lymphoma tumorigenesis and progression."

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

Further reports about: IRCCS PCBP2 PEL cell growth cell surface cellular function signaling pathway

More articles from Life Sciences:

nachricht Aromatic couple makes new chemical bonds
30.06.2015 | Institute of Transformative Bio-Molecules (ITbM), Nagoya University

nachricht Breaking through a double wall with a sledgehammer
29.06.2015 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

3D Plasmonic Antenna Capable of Focusing Light into Few Nanometers

30.06.2015 | Physics and Astronomy

X-rays and electrons join forces to map catalytic reactions in real-time

30.06.2015 | Physics and Astronomy

A polarizing view

30.06.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>