Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clue to Genetic Cause of Fatal Birth Defect

13.10.2008
A novel enzyme may play a major role in anencephaly, offering hope for a genetic test or even therapy for the rare fatal birth defect in which the brain fails to develop, according to a study from researchers at the University of Illinois at Chicago College of Medicine.

The study appears in the October issue of the journal of Molecular Endocrinology.

In the U.S., 1,000 to 2,000 children are born with anencephaly each year. Most do not survive more than a day or two. Although anencephaly can sometimes be diagnosed through ultrasound, which picks up the malformation of the head, there is no genetic test, and its cause is unknown.

By breeding special "knockout" mice that were missing the gene for the enzyme called HSD17b7, UIC researchers found that such mice died on the tenth day of gestation with the severe lack of brain development that characterizes the human birth defect.

The failure of the mice to develop, as well as the extreme nature of the changes in the formation of the animals, was very surprising, said Geula Gibori, UIC distinguished professor of physiology and biophysics and principal investigator of the study. Mice that lack enzymes of similar function are born with subtle changes in their cognitive ability, but they survive.

The UIC researchers had previously discovered this novel enzyme and were focused on its role in converting the weak hormone estrogen into the more potent estradiol in the ovaries and its possible role in breast cancer.

Recent research has shown that the HSD17b7 enzyme has an additional role in the last steps of cholesterol biosynthesis. But because the fetus receives cholesterol from the mother during gestation, Gibori and her colleagues did not expect the enzyme to be of much importance to development, she said.

However, it appears that as the fetal mouse brain develops it forms a blood barrier, blocking maternal cholesterol from brain cells. The brain becomes dependent on the biosynthesis of its own cholesterol once this blood-brain barrier forms, at day 10 of gestation.

The UIC researchers established that in the fetus, the brain is the most important site for HSD17b7 expression and provided evidence that anencephaly may result from the loss of this enzyme.

"Creating a knockout mouse is a very laborious process," said Aurora Shehu, first author of the paper and at that time a graduate student in Gibori's laboratory. Mice with only one copy of the gene are produced and then interbred; one in four of their offspring should have no copy of the gene -- a "null" mouse.

"We expected null mice to be born and to be infertile, however, no null mice were born," said Shehu. "I was afraid I had made a mistake, and went back to the beginning, repeating the entire process, but still no null mice were born."

Shehu then began more painstaking work, performing in-utero genetic testing on entire litters -- often 10 to 12 fetuses per litter. She found that the null mice were there, but they were dying at day 10 of gestation, when the blood-brain barrier develops.

Gibori says the gene that is missing or defective in human anencephaly is not yet known, but the discovery that the deletion of HSD17b7 in the mouse causes anencephaly suggests this gene may be awry in the human disease.

"This opens up very exciting possibilities for understanding human anencephaly, and, perhaps, someday being able to provide a genetic test for the condition early in pregnancy -- and ultimately a therapy," she said.

As their next step, Gibori's lab plans to test human anencephalic tissue for a mutation in the HSD17b7 gene.

The study was supported by grants from the National Institutes of Health. Jifang Mao, Gil B. Gibori, Julia Halperin, Jamie Le, Y. Sangeeta Devi and Bradley Merrill of the UIC College of Medicine and Hiroaki Kiyokawa of Northwestern University also contributed to the study.

Jeanne Galatzer-Levy | Newswise Science News
Further information:
http://www.uic.edu

Further reports about: Fatal Birth Defect Genetic HSD17b7 UIC anencephaly develop enzyme gestation

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>