Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closing in on advanced prostate cancer

13.12.2017

RB Barcelona scientists propose a new approach to combat prostate tumor cells that have become unresponsive to the treatments currently available

In most cases, prostate cancer is cured by surgical removal of the tumour and/or by radiotherapy. However, 20% of patients will need treatment to remove tumour cells but this treatment ceases to be effective after two or three years and the cancer develops further. Once this stage of the disease has been reached, there is no cure. A team headed by Xavier Salvatella, ICREA researcher at the Institute for Research in Biomedicine (IRB Barcelona), has discovered a new avenue through which to attack prostrate cancer cells that have developed drug-resistance. Published in the journal Structure, part of the Cell group, the study opens up new therapeutic avenues against a disease that causes 75,000 deaths a year in Europe alone (source: European Science Hub, 2015).


Top image shows interactions between the androgen receptor protein (AR) and the TFIIF protein in red. The bottom image shows that no interactions occur after the removal of the region of the AR to which TFIIF binds.

Credit: Paula Martínez-Cristóbal, IRB Barcelona

A clear target and new sites of attack

The survival and proliferation of prostate tumour cells calls for highly active androgen receptor protein. The drug used to remove tumour cells interferes with this protein by binding to a specific region of the receptor and blocking its activity. "Over time, the protein accumulates alterations and mutates, and there comes a point where it is futile to target this region with drugs because, in fact, it is no longer there," says Salvatella.

The Molecular Biophysics Laboratory, headed by Salvatella, studies the tridimensional structure and atomic movements of the androgen receptor, with the aim to find new binding sites. It has been known for some years that the protein has a small region, spanning only 20 amino acids, that is important for tumour cell survival. The study now describes for the first time that this region--usually without a structure and therefore a priori disregarded as a drug target--has a helix shape. Upon gaining this helix--it is not known how the helix occurs--, another protein, called TFIIF, binds to it. The study reveals that this interaction stimulates the activity of the androgen receptor and, consequently, facilitates the survival and multiplication of tumour cells.

To this 20-residue motif in the androgen receptor the IRB Barcelona teams now adds the protein TFIIF as a potential therapeutic target for prostate cancer. "The fact that TFIIF is a folded protein with a more defined structure makes it easier to search for drugs that can interfere with its interaction with the motif. For prostate tumour cells that have become resistant to treatment, we believe that this interaction could be their last mechanism through which to survive and proliferate," explains Salvatella.

"Using cells in vitro, we have seen that if we remove this region, the TFIIF protein can't bind to the androgen receptor. So if the interaction does not occur, the androgen receptor loses activity, which is what we are interested in achieving," says Elzbieta Maria Szulc, "la Caixa" PhD student at IRB Barcelona and co-first author of the study with Eva de Mol, a former "la Caixa" PhD student in the same lab who started this line of research.

In collaboration with experts in computational modelling, the scientists are searching for drugs that interfere with TFIIF. "We don't know whether such drugs will have a positive effect on cells, but the data available is promising," says Salvatella.

###

This study has involved Angel R. Nebreda's lab and the Experimental Bioinformatics Lab, both at IRB Barcelona, and also the University of Barcelona. The work was funded by the European Research Council (ERC), the Fundación "la Caixa", the Marie Curie Programme of the European Union, and the Spanish Ministry of Economy and Competitiveness, the latter through ERDFs.

Reference article:

Eva De Mol, Elzbieta Szulc, Claudio Di Sanza, Paula Martínez-Cristóbal, Carlos W. Bertoncini, R. Bryn Fenwick, Marta Frigolé-Vivas, Marianela Masín, Irene Hunter, Víctor Buzón, Isabelle Brun-Heath, Jesús García, Gianni De Fabritiis, Eva Estébanez-Perpiñá, Iain J. McEwan, Angel R. Nebreda, and Xavier Salvatella Regulation of androgen receptor activity by transient interactions of its transactivation domain with general transcription regulators

Structure (2017) https://doi.org/10.1016/j.str.2017.11.007

VIDEO MEET OUR SCIENTISTS: Xavier Salvatella "Magical Choreography" https://www.youtube.com/watch?v=Agh1aBX277Y

Media Contact

Sònia Armengou
armengou@irbbarcelona.org
34-934-037-255

http://www.irbbarcelona.org 

Sònia Armengou | EurekAlert!

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>