Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Closer look at cell membrane shows cholesterol 'keeping order'

01.04.2011
Cell membranes form the "skin" of most every cell in your body, but the ability to view them up close and in motion cannot be rendered by many experimental techniques.

A team of scientists working at the National Institute of Standards and Technology (NIST) and University of California, Irvine, recently developed a way to magnify them dramatically. Their work has helped illuminate the important role of cholesterol within this boundary between the cell and the outside world.

The multi-institutional team used tools at the NIST Center for Neutron Research (NCNR) to examine the membrane at more than 1,000 times the resolution offered by an optical microscope—the equivalent of magnifying the point of a needle to the size of a large building. This enabled an unprecedented look at the membrane, which—because it controls access to our cells—is a major target for many drugs.

"Drugs that affect pain sensation, heart rhythm, mood, appetite and memory all target proteins lodged in the cell membrane that function like little gates," says Ella Mihailescu of the Institute for Bioscience and Biotechnology Research, a joint institute of NIST and the University of Maryland. "Because membranes and their proteins are important to medicine, we would like a better picture of how the membrane functions—and not just a better snapshot. We want to see it move, as it does constantly in real life."

Optical microscopes offer limited resolution, while the more powerful electron microscopes require freezing samples before they can be magnified. But by using neutron diffraction, which does not require frozen subjects, the team not only observed the membrane more closely and in motion, but they also gained insight into the long-known phenomenon of the membrane growing thicker and stiffer in the presence of cholesterol.

These lipid chains form a two-layer skin with the "heads" of the lipids facing outward toward the cell's exterior and interior and the "tails" intermingling on the inside of the cellular membrane. Cholesterol is known to be important for managing disorder in membranes. The team saw for the first time that when cholesterol is present, these tails line up in a tight formation, looking like a narrow stripe from which the lipid chains stretch outward—and producing the order that had been previously anticipated, but never shown directly. But without cholesterol, the tails go a bit wild, flapping around energetically and in some cases even pushing up toward their chains' heads.

Mihailescu says the findings hint that cholesterol may have profound consequences for the membrane's gatekeeper proteins, which are very sensitive to their environment. "The membrane and its proteins interact constantly, so we're curious to learn more," she says. "With this unique magnification technique, we can explore the cell membrane more effectively than ever possible, and we are now establishing a research program with the University of Maryland to do so in greater detail."

* M. Mihailescu, R. G. Vaswani, E. Jardon-Valadez, F. Castro-Roman, J. A. Freites, D. L. Worcester, A. R. Chamberlin, D. J. Tobias and S. H. White. Acyl-chain methyl distributions of liquid-ordered and -disordered membranes. Biophysical Journal, March 2011, Vol. 100, pp. 1455-62, DOI: 10.1016/j.bpj.2011.01.035.

Chad Boutin | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Mihailescu NIST cell membrane electron microscope

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>