Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Close to human: Scientists decipher the origin of tarsiers

30.04.2013
Scientists of Münster Univerity have finally resolved the controversial question of the phylogenetic decent and evolutionary history of Ghost Monkeys / Results published online in "Nature Scientific Reports"

Tarsiers are indigenous to the islands of Southeast Asia, but visitors to the zoo should also be familiar with these charming monkeys with their conspicuously big eyes. A meeting with them in the monkey house is practically a visit with our own relatives, a new study now shows.

For decades, we remained in the dark regarding the evolutionary origin of the tarsiers, but now a new scientific study has brought light into this dark corner of our knowledge; the tarsiers, or Ghost Monkeys, are indisputably much more closely related to humans and other higher primates than previously imagined. The research group of Dr. Jürgen Schmitz in the Institute of Experimental Pathology at the University of Münster in Germany, funded by the German Science Foundation (DFG), has finally resolved the controversial question of the phylogenetic decent and evolutionary history of this branch of higher primates. The results of their scientific analyses have just been published online in the journal "Nature Scientific Reports".

The tarsiers were long thought to represent the very first branching on the evolutionary tree of primates, and thus more distantly related to humans and other higher primates. But this view was already shaken in 2001, when Dr. Jürgen Schmitz and his colleagues identified 50-million-year-old so called ‘Jumping genes’ in the current genomes of tarsiers. “These jumping genes are contemporary, quasi fossilized genomic witnesses of tarsiers much closer relationship to humans than to other prosimians,” explained Schmitz. Unfortunately, over the next twelve years, others’ analyses of tarsier DNA sequences could not definitively confirm their placement on this branch of the evolutionary tree of primates – until now.

In a much more extensive analysis of ancient jumping genes in primates, Schmitz and his research group in Münster, along with others from the Genome Institute of Washington, have finally found clear evidence that the tarsiers are indeed much more closely related to humans than previously thought. Dr. Gennady Churakov and Gerrit Hartig, the two bioinformatics scientists who screened and analyzed the genomes of Tarsius and other related primate species, provided the major contribution to this evidence. In describing their bioinformatics approach, Dr. Churakov explained, “For the first time, we were able to examine the entire genome of the tarsiers and compare it with those of many representatives of other higher primates and prosimians.” Using complex computer algorithms, the team was able to identify 104 50-million-year-old, jumping genes in Tarsius that are identical with ones in human, unequivocally indicating that they both inherited them from a common ancestor. Thus, one of the most controversial, unresolved questions of primate evolution is now answered. “For gene and genome comparisons, Tarsius is decidedly the closest reference to higher primates,” exclaimed Prof. Jürgen Brosius, head of the Institute of Experimental Pathology, obviously excited with the new results from his institute.

Contact:

Dr. Thomas Bauer
Dekanat der Medizinischen Fakultät
der Westfälischen Wilhelms-Universität Münster
Ressort Presse & Public Relations
Phone: +49 (0) 251 - 83 58 93 7
E-Mail: thbauer@uni-muenster.de

Publication:

Hartig, G., Churakov, G., Warren, W. C., Brosius, J., Makalowski, W., Schmitz, J. (2013) Retrophylogenomics place tarsiers on the evolutionary branch of anthropoids.

http://dx.doi.org/10.1038/srep01756

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>