Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloning: Back from the ice

17.11.2008
RIKEN researchers have produced healthy cloned mice from cells taken from bodies frozen for 16 years

Many scientists have considered using cloning to resurrect extinct animals frozen in permafrost, such as the woolly mammoth. This has proven to be difficult because there are no live cells, and DNA is irreparably damaged by ice crystals.

Now cloning techniques may have progressed to the point where resurrection from permafrost could become reality. Teruhiko Wakayama at the RIKEN Center for Developmental Biology in Kobe and co-workers have produced healthy cloned mice from cells that were frozen for 16 years at -20 °C without any preserving chemicals—simulating the conditions in permafrost (1).

Wakayama and his team adapted a common cloning technique called somatic cell nuclear transfer (SCNT). Usually, researchers collect a single live cell of the donor animal and fuse it with a living egg that has had its own nucleus removed. However dead cells cannot be used for cell fusion, so Wakayama invented a new injection method in which the nuclei from dead cells are directly injected into the egg.

The researchers first performed SCNT on cells from mice frozen for a week. They found that frozen brain cells were the best donor nuclei and, surprisingly, the frozen cell nuclei yielded more healthy clones than living brain cells. It is possible that all the sugars in the brain protect cells from freezing damage. Furthermore, the freezing process might partly unravel the tight bundle of nuclear DNA, allowing the host egg to access the donor’s genetic code more easily.

The normal SCNT procedure failed to produce cloned mice from bodies frozen for 16 years, but the researchers managed to establish embryonic stem cell lines. The stem cell nuclei were injected into other eggs and transferred into surrogate mothers, leading to four healthy cloned mice.

This work represents the first successful cloning from bodies stored in conditions similar to the natural permafrost environment. Wakayama is hopeful that they could eventually produce clones from ancient bodies of extinct species such as mammoths.

“Cells frozen in permafrost for thousands of years are not only frozen but also dried out,” he explains. “This means there is probably more damage in the nuclei than in our 16-year-frozen cells. However, we already published results this year in which we succeeded in using freeze-dried cells for nuclear transfer (2).

“What’s more, our paper demonstrated that even blood cells can be used as nuclear donors. Blood cells are found in any tissue, including skin and bones, which are most likely to be found in permafrost.”

1. Wakayama, S., Ohta, H., Hikichi, T., Mizutani, E., Iwaki, T., Kanagawa, O. & Wakayama, T. Production of healthy cloned mice from bodies frozen at -20 °C for 16 years. Proceedings of the National Academy of Sciences 105, 17318–17322 (2008).

2. Ono, T., Mizutani, E., Li, C. & Wakayama, T. Nuclear transfer preserves the nuclear genome of freeze-dried mouse cells. The Journal of Reproduction and Development In press. (2008)

The corresponding author for this highlight is based at the RIKEN Laboratory for Genomic Reprogramming

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/641/

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>