Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloning: Back from the ice

17.11.2008
RIKEN researchers have produced healthy cloned mice from cells taken from bodies frozen for 16 years

Many scientists have considered using cloning to resurrect extinct animals frozen in permafrost, such as the woolly mammoth. This has proven to be difficult because there are no live cells, and DNA is irreparably damaged by ice crystals.

Now cloning techniques may have progressed to the point where resurrection from permafrost could become reality. Teruhiko Wakayama at the RIKEN Center for Developmental Biology in Kobe and co-workers have produced healthy cloned mice from cells that were frozen for 16 years at -20 °C without any preserving chemicals—simulating the conditions in permafrost (1).

Wakayama and his team adapted a common cloning technique called somatic cell nuclear transfer (SCNT). Usually, researchers collect a single live cell of the donor animal and fuse it with a living egg that has had its own nucleus removed. However dead cells cannot be used for cell fusion, so Wakayama invented a new injection method in which the nuclei from dead cells are directly injected into the egg.

The researchers first performed SCNT on cells from mice frozen for a week. They found that frozen brain cells were the best donor nuclei and, surprisingly, the frozen cell nuclei yielded more healthy clones than living brain cells. It is possible that all the sugars in the brain protect cells from freezing damage. Furthermore, the freezing process might partly unravel the tight bundle of nuclear DNA, allowing the host egg to access the donor’s genetic code more easily.

The normal SCNT procedure failed to produce cloned mice from bodies frozen for 16 years, but the researchers managed to establish embryonic stem cell lines. The stem cell nuclei were injected into other eggs and transferred into surrogate mothers, leading to four healthy cloned mice.

This work represents the first successful cloning from bodies stored in conditions similar to the natural permafrost environment. Wakayama is hopeful that they could eventually produce clones from ancient bodies of extinct species such as mammoths.

“Cells frozen in permafrost for thousands of years are not only frozen but also dried out,” he explains. “This means there is probably more damage in the nuclei than in our 16-year-frozen cells. However, we already published results this year in which we succeeded in using freeze-dried cells for nuclear transfer (2).

“What’s more, our paper demonstrated that even blood cells can be used as nuclear donors. Blood cells are found in any tissue, including skin and bones, which are most likely to be found in permafrost.”

1. Wakayama, S., Ohta, H., Hikichi, T., Mizutani, E., Iwaki, T., Kanagawa, O. & Wakayama, T. Production of healthy cloned mice from bodies frozen at -20 °C for 16 years. Proceedings of the National Academy of Sciences 105, 17318–17322 (2008).

2. Ono, T., Mizutani, E., Li, C. & Wakayama, T. Nuclear transfer preserves the nuclear genome of freeze-dried mouse cells. The Journal of Reproduction and Development In press. (2008)

The corresponding author for this highlight is based at the RIKEN Laboratory for Genomic Reprogramming

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/641/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>