Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clock for brain waves

19.11.2014

Inhibitory neurons and electrical synapses determine the frequency of rhythmic activity in the brain

Oscillations of brain activity influence our attention and many other mental functions. Tatjana Tchumatchenko from the Max Planck Institute for Brain Research in Frankfurt and Claudia Clopath from Imperial College London have now developed a theoretical model that explains the origin of such oscillations in neural networks.


Netzwerk aus Nervenzellen in der Hirnrinde (Federn: elektrische Synapsen, Linien: chemische Synapsen). Die elektrischen Synapsen sind wichtig für rhythmische Netzwerk-weite Aktivitätsschwankungen.

© MPI f. Hirnforschung/ T. Tchumatchenko

Inhibitory neurons and electrical synapses play key roles and could therefore serve as targets for new drugs.

Alpha and gamma brain waves, which are visualized by means of electroencephalography (EEG) measurements, can provide doctors with information about a patient’s mental state for diagnostic purposes.

The mysterious term “brain waves” denotes nothing more than synchronous oscillations in the activity of groups of neurons that are often spread over large parts of the brain. The Greek letters indicate the oscillation frequency, which ranges from one hertz for alpha waves to several hundred hertz for theta waves. The waves act as a clock for the human brain and control attention, perception and memory formation.

The results of numerous experimental studies have shown that certain classes of neurons exert greater influence on network oscillations than others. Inhibitory neurons, which make up about 20 percent of the nerve cells in the cerebral cortex, appear to play a key role in the generation of brain waves.

However, it is unknown how inhibitory neurons control these oscillations. Because brain waves are a network phenomenon, it is also not clear how the properties of individual cells are reflected in network dynamics, or whether only synaptic connections are important.

Tatjana Tchumatchenko from the Max Planck Institute for Brain Research in Frankfurt and Claudia Clopath from Imperial College London are convinced that mathematics can deepen our understanding of the phenomenon of brain waves. In their joint work, they developed a mathematical framework that models the activity of excitatory and inhibitory neurons in a network such as the human cerebral cortex.

“We are able to reliably reproduce results from previous experiments using an analytical and numeric approach and our mathematical model has revealed two new conditions essential for the emergence of brain waves,” says Tatjana Tchumatchenko. “First, the individual inhibitory neurons must exhibit subthreshold resonance of the membrane potential at the preferred network oscillation frequency, i.e. they have to oscillate in time, although their electrical impulses do not necessarily reveal this oscillation.”

But the type of synaptic connectivity is also important, as oscillations occur only if the inhibitory neurons are interlinked by electrical synapses of sufficient connection strength.

Until recently, electrical synapses in the cerebral cortex were largely unknown, but are now known to occur in many areas of the brain. However, only inhibitory neurons are electrically coupled. This type of signal transmission has not been observed between excitatory neurons.

Inhibitory neurons and their synaptic connections therefore play a central role, say the researchers: “Amazingly, our model shows that the oscillation frequency of the entire network is determined only by the properties of inhibitory neurons and their connections, despite the fact that the majority of neurons are of the excitatory type,” says Claudia Clopath. “Of course,” she adds, “the properties of excitatory neurons help shape the dynamics of the network, but they only determine the amplitude of brain waves, not their frequency of oscillation.”

The knowledge gained will advance our understanding of complex systems and help explain the interplay between single network units and the arising network dynamics. The research results may also contribute to the development of more targeted drugs that could improve the chances for successful treatment in psychiatric care.


Contact

Amadeus Dettner
Max Planck Institute for Brain Research, Frankfurt am Main

Email: amadeus.dettner@brain.mpg.de

 
Dr. Tatjana Tchumatchenko
Max Planck Institute for Brain Research, Frankfurt am Main

Email: tatjana.tchumatchenko@brain.mpg.de


Original publication
Tatjana Tchumatchenko und Claudia Clopath

Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance

Nature Communications, 18 November 2014

Amadeus Dettner | Max-Planck-Institute
Further information:
http://www.mpg.de/8764344/brain-waves-clock

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>