Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clock for brain waves

19.11.2014

Inhibitory neurons and electrical synapses determine the frequency of rhythmic activity in the brain

Oscillations of brain activity influence our attention and many other mental functions. Tatjana Tchumatchenko from the Max Planck Institute for Brain Research in Frankfurt and Claudia Clopath from Imperial College London have now developed a theoretical model that explains the origin of such oscillations in neural networks.


Netzwerk aus Nervenzellen in der Hirnrinde (Federn: elektrische Synapsen, Linien: chemische Synapsen). Die elektrischen Synapsen sind wichtig für rhythmische Netzwerk-weite Aktivitätsschwankungen.

© MPI f. Hirnforschung/ T. Tchumatchenko

Inhibitory neurons and electrical synapses play key roles and could therefore serve as targets for new drugs.

Alpha and gamma brain waves, which are visualized by means of electroencephalography (EEG) measurements, can provide doctors with information about a patient’s mental state for diagnostic purposes.

The mysterious term “brain waves” denotes nothing more than synchronous oscillations in the activity of groups of neurons that are often spread over large parts of the brain. The Greek letters indicate the oscillation frequency, which ranges from one hertz for alpha waves to several hundred hertz for theta waves. The waves act as a clock for the human brain and control attention, perception and memory formation.

The results of numerous experimental studies have shown that certain classes of neurons exert greater influence on network oscillations than others. Inhibitory neurons, which make up about 20 percent of the nerve cells in the cerebral cortex, appear to play a key role in the generation of brain waves.

However, it is unknown how inhibitory neurons control these oscillations. Because brain waves are a network phenomenon, it is also not clear how the properties of individual cells are reflected in network dynamics, or whether only synaptic connections are important.

Tatjana Tchumatchenko from the Max Planck Institute for Brain Research in Frankfurt and Claudia Clopath from Imperial College London are convinced that mathematics can deepen our understanding of the phenomenon of brain waves. In their joint work, they developed a mathematical framework that models the activity of excitatory and inhibitory neurons in a network such as the human cerebral cortex.

“We are able to reliably reproduce results from previous experiments using an analytical and numeric approach and our mathematical model has revealed two new conditions essential for the emergence of brain waves,” says Tatjana Tchumatchenko. “First, the individual inhibitory neurons must exhibit subthreshold resonance of the membrane potential at the preferred network oscillation frequency, i.e. they have to oscillate in time, although their electrical impulses do not necessarily reveal this oscillation.”

But the type of synaptic connectivity is also important, as oscillations occur only if the inhibitory neurons are interlinked by electrical synapses of sufficient connection strength.

Until recently, electrical synapses in the cerebral cortex were largely unknown, but are now known to occur in many areas of the brain. However, only inhibitory neurons are electrically coupled. This type of signal transmission has not been observed between excitatory neurons.

Inhibitory neurons and their synaptic connections therefore play a central role, say the researchers: “Amazingly, our model shows that the oscillation frequency of the entire network is determined only by the properties of inhibitory neurons and their connections, despite the fact that the majority of neurons are of the excitatory type,” says Claudia Clopath. “Of course,” she adds, “the properties of excitatory neurons help shape the dynamics of the network, but they only determine the amplitude of brain waves, not their frequency of oscillation.”

The knowledge gained will advance our understanding of complex systems and help explain the interplay between single network units and the arising network dynamics. The research results may also contribute to the development of more targeted drugs that could improve the chances for successful treatment in psychiatric care.


Contact

Amadeus Dettner
Max Planck Institute for Brain Research, Frankfurt am Main

Email: amadeus.dettner@brain.mpg.de

 
Dr. Tatjana Tchumatchenko
Max Planck Institute for Brain Research, Frankfurt am Main

Email: tatjana.tchumatchenko@brain.mpg.de


Original publication
Tatjana Tchumatchenko und Claudia Clopath

Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance

Nature Communications, 18 November 2014

Amadeus Dettner | Max-Planck-Institute
Further information:
http://www.mpg.de/8764344/brain-waves-clock

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>