Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clock for brain waves

19.11.2014

Inhibitory neurons and electrical synapses determine the frequency of rhythmic activity in the brain

Oscillations of brain activity influence our attention and many other mental functions. Tatjana Tchumatchenko from the Max Planck Institute for Brain Research in Frankfurt and Claudia Clopath from Imperial College London have now developed a theoretical model that explains the origin of such oscillations in neural networks.


Netzwerk aus Nervenzellen in der Hirnrinde (Federn: elektrische Synapsen, Linien: chemische Synapsen). Die elektrischen Synapsen sind wichtig für rhythmische Netzwerk-weite Aktivitätsschwankungen.

© MPI f. Hirnforschung/ T. Tchumatchenko

Inhibitory neurons and electrical synapses play key roles and could therefore serve as targets for new drugs.

Alpha and gamma brain waves, which are visualized by means of electroencephalography (EEG) measurements, can provide doctors with information about a patient’s mental state for diagnostic purposes.

The mysterious term “brain waves” denotes nothing more than synchronous oscillations in the activity of groups of neurons that are often spread over large parts of the brain. The Greek letters indicate the oscillation frequency, which ranges from one hertz for alpha waves to several hundred hertz for theta waves. The waves act as a clock for the human brain and control attention, perception and memory formation.

The results of numerous experimental studies have shown that certain classes of neurons exert greater influence on network oscillations than others. Inhibitory neurons, which make up about 20 percent of the nerve cells in the cerebral cortex, appear to play a key role in the generation of brain waves.

However, it is unknown how inhibitory neurons control these oscillations. Because brain waves are a network phenomenon, it is also not clear how the properties of individual cells are reflected in network dynamics, or whether only synaptic connections are important.

Tatjana Tchumatchenko from the Max Planck Institute for Brain Research in Frankfurt and Claudia Clopath from Imperial College London are convinced that mathematics can deepen our understanding of the phenomenon of brain waves. In their joint work, they developed a mathematical framework that models the activity of excitatory and inhibitory neurons in a network such as the human cerebral cortex.

“We are able to reliably reproduce results from previous experiments using an analytical and numeric approach and our mathematical model has revealed two new conditions essential for the emergence of brain waves,” says Tatjana Tchumatchenko. “First, the individual inhibitory neurons must exhibit subthreshold resonance of the membrane potential at the preferred network oscillation frequency, i.e. they have to oscillate in time, although their electrical impulses do not necessarily reveal this oscillation.”

But the type of synaptic connectivity is also important, as oscillations occur only if the inhibitory neurons are interlinked by electrical synapses of sufficient connection strength.

Until recently, electrical synapses in the cerebral cortex were largely unknown, but are now known to occur in many areas of the brain. However, only inhibitory neurons are electrically coupled. This type of signal transmission has not been observed between excitatory neurons.

Inhibitory neurons and their synaptic connections therefore play a central role, say the researchers: “Amazingly, our model shows that the oscillation frequency of the entire network is determined only by the properties of inhibitory neurons and their connections, despite the fact that the majority of neurons are of the excitatory type,” says Claudia Clopath. “Of course,” she adds, “the properties of excitatory neurons help shape the dynamics of the network, but they only determine the amplitude of brain waves, not their frequency of oscillation.”

The knowledge gained will advance our understanding of complex systems and help explain the interplay between single network units and the arising network dynamics. The research results may also contribute to the development of more targeted drugs that could improve the chances for successful treatment in psychiatric care.


Contact

Amadeus Dettner
Max Planck Institute for Brain Research, Frankfurt am Main

Email: amadeus.dettner@brain.mpg.de

 
Dr. Tatjana Tchumatchenko
Max Planck Institute for Brain Research, Frankfurt am Main

Email: tatjana.tchumatchenko@brain.mpg.de


Original publication
Tatjana Tchumatchenko und Claudia Clopath

Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance

Nature Communications, 18 November 2014

Amadeus Dettner | Max-Planck-Institute
Further information:
http://www.mpg.de/8764344/brain-waves-clock

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>