Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate relicts may help researchers understand climate change

13.08.2014

While hiking through the Ozarks’ characteristic oak and hickory forests as a teenager, ecologist Scott Woolbright discovered something decidedly uncharacteristic for the region: prickly pear cacti growing on an exposed, rocky ledge.

In a recent paper published in Trends in Ecology and Evolution, Woolbright describes how populations and communities like these, known as climate relicts, can help scientists understand how ecological communities are affected by climate change.


A satellite image of a glade at Round Bluff Natural Preserve in Shawnee Hills, Johnson County, Illinois, one of several glade ecosystems that occur throughout Southern Illinois.

Photo by Kathryn Coulter. Satellite image courtesy of Google Earth.

Rocky, well-drained slopes in the Ozarks often create habitat “islands” within the surrounding forest known as glade ecosystems, said Woolbright, who is a postdoctoral fellow at the Institute for Genomic Biology (IGB) in the Genomic Ecology of Global Change research theme.

In the Ozarks, glades often help to preserve isolated communities of cacti and other desert and prairie species that dominated the area during the Hypsithermal, a period of warming that occurred four to eight thousand years ago.

Ecologists have recently begun to discuss climate relicts as potential “natural laboratories” for studying the evolution of single plant species. Woolbright and co-authors suggest expanding such studies to include interactions between plants and other organisms that can drive community and ecosystem patterns.

It can be very difficult to replicate the long-term effects of climate change over very large geographic areas in the laboratory or field. But isolated climate relicts that are distributed across landscapes create “natural experiments” that help to overcome these problems of scale.

Using the genomic technologies he’s learned at the IGB, Woolbright hopes to develop a research program that investigates climate-driven changes in species interactions at the gene level.

While such a program would contribute to basic community and ecosystem research, it also has significant implications for ecological conservation and restoration.

“We’re learning that you often can’t just go out and preserve a single species,” Woolbright said. “Interactions with other species can play very important roles in species survival. If we don’t take those interactions into account, we can miss things that are really important.”

Many climate relicts are threatened by small population size, ongoing environmental change in already stressful environments, invasions from species in adjacent non-relict communities, and human encroachment.  

Woolbright said it will take the cooperation of many stakeholders to conserve relicts for their historical, ecological and aesthetic value.

Thomas Whitham, Catherine Gehring, and Gerard Allan from Northern Arizona University as well as Joseph Bailey from the University of Tennessee were co-authors in this study.

The IGB’s fellows program supported Woolbright, who was inspired to pursue a career in climate change ecology by his encounter with Ozark glades.

Written By: 
Claire Sturgeon

Claire Sturgeon | Eurek Alert!
Further information:
http://www.igb.illinois.edu/news/climate-relicts-may-help-researchers-understand-climate-change

Further reports about: Biology Climate Ecology IGB Ozark ecological ecosystem interactions species technologies

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>