Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change increases the risk of ozone damage to plants

30.06.2011
Ground-level ozone is an air pollutant that harms humans and plants. Both climate and weather play a major role in ozone damage to plants. Researchers at the University of Gothenburg, Sweden, have now shown that climate change has the potential to significantly increase the risk of ozone damage to plants in northern and central Europe by the end of this century.

“The increased risk of ozone damage to vegetation is mainly due to rising ozone concentrations and higher temperatures in the future,” says Jenny Klingberg at the University of Gothenburg’s Department of Plant and Environmental Sciences. “The most important effect on agricultural crops is premature aging, which result in smaller harvests with lower quality.”

Ozone is an atmospheric gas that is found at a height of 10-40 kilometres above the Earth’s surface. Here the ozone layer protects against the sun’s ultraviolet rays and is vital for life on Earth. Ozone is also formed at ground level when car exhaust fumes react in the presence of sunlight. This ground-level ozone is an air pollutant that is toxic to humans. Plants are more sensitive than humans and ground-level ozone generates large costs in the form of reduced crop yields in agriculture and reduced forest growth.

Researchers have traditionally estimated the risk of ozone damage to plants based on the concentration of ozone in the ambient air. The negative effects of ozone on vegetation are more closely related to the uptake of ozone through the stomatal openings on the plant leaves. The study carried out by Klingberg is one of the first to use this method to estimate the risk of ozone damage to vegetation in the climate of the future.

Risk of ozone damage greatest in central Europe
“The results show that the risk of ozone damage to plants is greatest in central Europe where ozone concentrations are high and climatic conditions promote uptake of ozone through the stomata. Weather and climate affect both the concentration of ground-level ozone in the ambient air and to what degree the stomata are open.”

However, the risk of ozone damage is also affected by the carbon dioxide concentration in the air. Research indicates that the plants’ stomata are less open when the concentration of carbon dioxide increases.

“The models show that higher carbon dioxide concentrations in the air could mean that the risk of ozone damage to crops and deciduous trees will not increase,” says Klingberg. “But the magnitude of this effect is uncertain, especially for trees. If the effect of carbon dioxide on the stomata will turn out to be small, future climate change has the potential to significantly increase the risk of ozone damage to vegetation in northern and central Europe.”

The calculations in the study were performed for two future climate change scenarios.

The calculations in the study were performed for two future climate change scenarios. The thesis The influence of climate on ozone risk for vegetation was successfully defended at the University of Gothenburg. Supervisor: Håkan Pleijel.

For more information, please contact:
Jenny Klingberg
+46736- 38 07 41
jenny.klingberg@dpes.gu.se
Authors: Klingberg J, Engardt M, Uddling J, Karlsson P E and Pleijel H (2011).
Title: Ozone risk for vegetation in the future climate of Europe based on stomatal ozone uptake calculations. Journal: Tellus 63A:174-187

http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0870.2010.00465.x/abstract;jsessionid=6857AC8585488F40188509207188FB50.d03t03

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/25120
http://www.gu.se

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>