Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate change driving tropical birds to higher elevations

Tropical birds are moving to higher elevations because of climate change, but they may not be moving fast enough, according to a new study by Duke University researchers.

The study, published Thursday in the peer-reviewed online journal PLoS ONE, finds that the birds aren't migrating as rapidly as scientists previously anticipated, based on recorded temperature increases.

The animals instead may be tracking changes in vegetation, which can only move slowly via seed dispersal.

"This is the first study to evaluate the effects of warming on the elevation ranges of tropical birds," said Stuart Pimm, Doris Duke Professor of conservation ecology at Duke's Nicholas School of the Environment and a co-author of the study. "It provides new evidence of their response to warming, but also shows there is a delay in their response."

Evidence from temperate areas, such as North America and Europe, shows that many animal and plant species are adapting to climate change by migrating northward, breeding earlier or flowering earlier in response to rising temperatures.

"However, our understanding of the response of tropical birds to warming is still poor," said German Forero-Medina, a Ph.D. student at Duke's Nicholas School who is lead author of the new study. "Moving to the north doesn't help them, because tropical temperatures do not change very much with latitude. So moving up to higher elevations is the only way to go, but there are few historical data that can serve as baselines for comparison over time."

What is going on with tropical species at higher altitudes is important, Forero-Medina said, because about half of all birds species live 3,500 feet or more above sea level, and of these species, more than 80 percent may live within the tropics.

In 2010, the authors of the new study and a team of biologists participated in an expedition to the summit of the remote Cerros del Sira mountains in central Peru – a place visited by only a few ornithologists on prior occasions. The complex topography, geology and climate of the mountains have produced isolated patches of habitat with unique avian communities and distinct taxa.

Forero-Medina and his colleagues used survey data collected on bird species in the region in the 1970s by John Terborgh, research professor emeritus at Duke, to compare past and present distributions.

"Using John Terborgh's groundbreaking data -- the first ever collected from this region --gave us a unique opportunity to understand the effects of 40 years of warming on tropical birds," Forero-Medina says.

The biologists found that although the ranges of many bird species have shifted uphill since Terborgh's time, the shifts fell short of what scientists had projected based on temperature increases over the four decades.

"This may be bad news," Pimm said. "Species may be damned if they move to higher elevations to keep cool and then simply run out of habitat. But, by staying put, they may have more habitat but they may overheat."

CITATION: "Elevational Ranges of Birds on a Tropical Montane Gradient Lag Behind Warming Temperatures" German Forero-Medina, John Terborgh, S. Jacob Socolar & Stuart L. Pimm. PLoS ONE, Dec. 7, 2011.

Tim Lucas | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>