Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change affects geographical range of plants

16.08.2010
Researches at the University of Gothenburg have shown how climate change many million years ago has influenced the geographical range of plants by modelling climate preferences for extinct species. The method can also be used to predict what effects climate change of today and tomorrow will have on future distributions of plants and animals.

The researcher Mats Töpel at the Department of Plant and Environmental Sciences, University of Gothenburg, has studied how climate change has influenced the development of a group of plants in the genus Potentilla, commonly known as cinquefoils.

His research shows that this group of plants developed during a period of climate change in western North America around 25 million years ago, which led to summer drought in California and the largest desert in North America, the Great Basin.

The small plant Ivesia bailey is adapted to living in extremely dry conditions, by seeking shade on north-facing rocks in the Nevada Desert. This lifestyle is believed to have evolved in the genus Potentilla around 20 million years ago.

Models of the climate

“By creating models of the climate in which the group probably evolved, I have shown that there was a suitable climate in the eastern part of the Great Basin approximately 25 million years ago, and that the geographical range of these plants expanded to the west at the same time as new species evolved and adapted to different types of environments.

The method of building climate models for organisms that no longer exist is quite new, and only a few studies of this type have previously been published.

Models can be used to predict the future

“I have used the method to study how climate change many millions of years ago has shaped the vegetation we see today, but it can also be used to predict how present and future climate change may affect organisms and hence, our living conditions. If these changes lead to a situation in which the crops we depend on find it difficult to cope, large resources will be required to maintain or reorganise our agricultural production.

Future climate change may also lead to alien species changing their geographical ranges and starting to interact with native species, in the same way as both marine and terrestrial species have done in recent years. This can eventually lead to native species being outrivaled by the alien species.

“Based on my results and this method we have an opportunity to understand processes that where active in the past and that have shaped the environment we live in today. This gives us an opportunity to interpret our contemporary world so that we can influence what our future will look like.”

The thesis Phylogenetic and Phyloclimatic Inference of the Evolution of Potentilleae (Rosaceae) was successfully defended on 11 June.

Contact:
Mats Töpel, Department of Plant and Environmental Sciences, University of Gothenburg.
+46 (0)70-406 52 92, or +46 (0)31- 786 2911
mats.topel@dpes.gu.se

Helena Aaberg | idw
Further information:
http://gupea.ub.gu.se/handle/2077/22321

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>