Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change affects geographical range of plants

16.08.2010
Researches at the University of Gothenburg have shown how climate change many million years ago has influenced the geographical range of plants by modelling climate preferences for extinct species. The method can also be used to predict what effects climate change of today and tomorrow will have on future distributions of plants and animals.

The researcher Mats Töpel at the Department of Plant and Environmental Sciences, University of Gothenburg, has studied how climate change has influenced the development of a group of plants in the genus Potentilla, commonly known as cinquefoils.

His research shows that this group of plants developed during a period of climate change in western North America around 25 million years ago, which led to summer drought in California and the largest desert in North America, the Great Basin.

The small plant Ivesia bailey is adapted to living in extremely dry conditions, by seeking shade on north-facing rocks in the Nevada Desert. This lifestyle is believed to have evolved in the genus Potentilla around 20 million years ago.

Models of the climate

“By creating models of the climate in which the group probably evolved, I have shown that there was a suitable climate in the eastern part of the Great Basin approximately 25 million years ago, and that the geographical range of these plants expanded to the west at the same time as new species evolved and adapted to different types of environments.

The method of building climate models for organisms that no longer exist is quite new, and only a few studies of this type have previously been published.

Models can be used to predict the future

“I have used the method to study how climate change many millions of years ago has shaped the vegetation we see today, but it can also be used to predict how present and future climate change may affect organisms and hence, our living conditions. If these changes lead to a situation in which the crops we depend on find it difficult to cope, large resources will be required to maintain or reorganise our agricultural production.

Future climate change may also lead to alien species changing their geographical ranges and starting to interact with native species, in the same way as both marine and terrestrial species have done in recent years. This can eventually lead to native species being outrivaled by the alien species.

“Based on my results and this method we have an opportunity to understand processes that where active in the past and that have shaped the environment we live in today. This gives us an opportunity to interpret our contemporary world so that we can influence what our future will look like.”

The thesis Phylogenetic and Phyloclimatic Inference of the Evolution of Potentilleae (Rosaceae) was successfully defended on 11 June.

Contact:
Mats Töpel, Department of Plant and Environmental Sciences, University of Gothenburg.
+46 (0)70-406 52 92, or +46 (0)31- 786 2911
mats.topel@dpes.gu.se

Helena Aaberg | idw
Further information:
http://gupea.ub.gu.se/handle/2077/22321

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>