Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Affects the Flight Period of Butterflies in Massachusetts

14.02.2013
While butterflies appear to be weathering the change, bird populations may not fair as well.

In a new study, Boston University researchers and collaborators have found that butterflies show signs of being affected by climate change in a way similar to plants and bees, but not birds, in the Northeast United States.


Ernest Williams, Hamilton College

The frosted elfin butterfly is one of the species covered in the study.

The researchers focused on Massachusetts butterfly flight periods, comparing current flight periods with patterns going back more than 100 years using museum collections and the records of dedicated citizen scientists. Their findings indicate that butterflies are flying earlier in warmer years.

“Butterflies are very responsive to temperature in a way comparable to flowering time, leafing out time, and bee flight times,” says Richard Primack, professor of biology and study co-author. “However, bird arrival times in the spring are much less responsive to temperature.” As a result, climate change could have negative implications for bird populations in the Northeast, which rely on butterflies and other insects as a food source. The team, which includes Caroline Polgar (Boston University), Sharon Stichter (Massachusetts Butterfly Club), Ernest Williams (Hamilton College), and Colleen Hitchcock (Boston College) will publish its findings in the February 12 online edition of the journal Biological Conservation (http://www.sciencedirect.com/science/article/pii/S0006320712005228).

While the effect of climate change on plant and bird life cycles in eastern North America has been well examined, studies of the effects of climate change on insects are rare, so these findings represent an important contribution. This new study investigated whether the responses to climate warming in Massachusetts of ten short-lived butterfly species known as elfins and hairstreaks are similar to responses seen in plants, birds and bees. Another unique feature of this study is its use of data from museum collections as well as data gathered by the Massachusetts Butterfly Club, a group of dedicated citizen scientists who love butterflies. Use of this data gave the researchers an opportunity to compare butterfly flight periods dating back to the late 1800s.

The researchers obtained over 5000 records of butterflies in flight using museum collections (1893–1985) and citizen science data (1986–2009), then analyzed the data using statistical models to determine how butterfly flight times are affected by temperature, rainfall, geographic location, and year.

The researchers found that the start of the butterfly flight period advances on average by two days for each degree Fahrenheit increase in temperature. The response of these butterfly species to temperature is similar to plant flowering times and bee flight times and is significantly greater than bird arrival times, which increases the likelihood of ecological mismatches with migratory birds arriving after the first spring flush of their insect food.

The researchers also found that observations by citizen science groups such as the Massachusetts Butterfly Club were an effective and largely untapped source of information that could be used to investigate the potential impacts of climate change on butterflies. Such data provides an opportunity to inform conservation policies on these species and associated habitat. While data from museums was helpful, it was less abundant and therefore less useful than the citizen science dataset.

About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research. In 2012, BU joined the Association of American Universities (AAU), a consortium of 62 leading research universities in the United States and Canada.

Contact data for other authors: Caroline Polgar (carolinepolgar@gmail.com), Ernest Williams (ewilliam@hamilton.edu), Sharon Stichter (sharonstichter@comcast.net), and Colleen Hitchcock (colleen.hitchcock@bc.edu).

Richard Primack | Newswise
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>