Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Affects the Flight Period of Butterflies in Massachusetts

14.02.2013
While butterflies appear to be weathering the change, bird populations may not fair as well.

In a new study, Boston University researchers and collaborators have found that butterflies show signs of being affected by climate change in a way similar to plants and bees, but not birds, in the Northeast United States.


Ernest Williams, Hamilton College

The frosted elfin butterfly is one of the species covered in the study.

The researchers focused on Massachusetts butterfly flight periods, comparing current flight periods with patterns going back more than 100 years using museum collections and the records of dedicated citizen scientists. Their findings indicate that butterflies are flying earlier in warmer years.

“Butterflies are very responsive to temperature in a way comparable to flowering time, leafing out time, and bee flight times,” says Richard Primack, professor of biology and study co-author. “However, bird arrival times in the spring are much less responsive to temperature.” As a result, climate change could have negative implications for bird populations in the Northeast, which rely on butterflies and other insects as a food source. The team, which includes Caroline Polgar (Boston University), Sharon Stichter (Massachusetts Butterfly Club), Ernest Williams (Hamilton College), and Colleen Hitchcock (Boston College) will publish its findings in the February 12 online edition of the journal Biological Conservation (http://www.sciencedirect.com/science/article/pii/S0006320712005228).

While the effect of climate change on plant and bird life cycles in eastern North America has been well examined, studies of the effects of climate change on insects are rare, so these findings represent an important contribution. This new study investigated whether the responses to climate warming in Massachusetts of ten short-lived butterfly species known as elfins and hairstreaks are similar to responses seen in plants, birds and bees. Another unique feature of this study is its use of data from museum collections as well as data gathered by the Massachusetts Butterfly Club, a group of dedicated citizen scientists who love butterflies. Use of this data gave the researchers an opportunity to compare butterfly flight periods dating back to the late 1800s.

The researchers obtained over 5000 records of butterflies in flight using museum collections (1893–1985) and citizen science data (1986–2009), then analyzed the data using statistical models to determine how butterfly flight times are affected by temperature, rainfall, geographic location, and year.

The researchers found that the start of the butterfly flight period advances on average by two days for each degree Fahrenheit increase in temperature. The response of these butterfly species to temperature is similar to plant flowering times and bee flight times and is significantly greater than bird arrival times, which increases the likelihood of ecological mismatches with migratory birds arriving after the first spring flush of their insect food.

The researchers also found that observations by citizen science groups such as the Massachusetts Butterfly Club were an effective and largely untapped source of information that could be used to investigate the potential impacts of climate change on butterflies. Such data provides an opportunity to inform conservation policies on these species and associated habitat. While data from museums was helpful, it was less abundant and therefore less useful than the citizen science dataset.

About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research. In 2012, BU joined the Association of American Universities (AAU), a consortium of 62 leading research universities in the United States and Canada.

Contact data for other authors: Caroline Polgar (carolinepolgar@gmail.com), Ernest Williams (ewilliam@hamilton.edu), Sharon Stichter (sharonstichter@comcast.net), and Colleen Hitchcock (colleen.hitchcock@bc.edu).

Richard Primack | Newswise
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>