Climate may keep beautiful killer plant in check

The flowering plant – purple loosestrife – has been heading north since it was first introduced from Europe to the eastern seaboard 150 years ago. This exotic invader chokes out native species and has dramatically altered wetland habitats in North America. But it turns out it may have a vulnerability after all: the northern climate. Canadian scientists have found that adapting to the Great White North carries a severe reproductive penalty that may limit its spread.

Purple loosestrife (Lythrum salicaria) destroys wildlife habitats by displacing native vegetation that provides food, shelter, and breeding areas for wildlife. In urban areas, it invades ditches where it can block or disrupt water flow. It has few pests and diseases, resists various control methods, and plants can produce as many as 3 million seeds a year.

But as this invasive plant has spread north it has run into challenges posed by a shorter growing season, according to a study conducted by Robert Colautti, who recently obtained his Ph.D. from the University of Toronto's Department of Ecology and Evolutionary Ecology. The results are published online this week in the Proceedings of the Royal Society of London, series B (https://rspb.royalsocietypublishing.org/content/firstcit) and featured in Nature (http://www.nature.com/nature/journal/v463/n7284/full/4631002e.html).

The authors used modeling and experimental studies of 20 purple loosestrife populations along a 1200 km latitudinal gradient from Maryland to Timmins, Ontario, representing a one-month difference in growing season. They found that northern populations have become locally adapted and flower earlier in response to a shorter growing season. However, early flowering plants suffer a cost in terms of smaller size and reduced seed production. The reason: a genetic constraint.

“Genes that cause early flowering also reduce plant size, so early flowering and small size evolve together,” says Colautti. “Smaller size results in lower seed production, which is likely to limit the spread of purple loosestrife in northern regions.”

Co-authors of the study are Colautti's supervisor Professor Spencer Barrett of the Department of Ecology and Evolutionary Biology and Christopher Eckert of Queen's University. The research was funded by the Natural Sciences and Engineering Research Council of Canada, an Ontario Graduate Scholarship and a Premier's Discovery Award from the Ontario Government.

MEDIA CONTACTS:

Robert Colautti
rob.colautti@utoronto.ca
919-972-1514 (cell)
Spencer Barrett
Department of Ecology and Evolutionary Biology
University of Toronto
spencer.barrett@utoronto.ca
416-978-4151
Kim Luke
Communications, Faculty of Arts & Science
University of Toronto
Kim.luke@utoronto.ca

Media Contact

Kim Luke EurekAlert!

More Information:

http://www.utoronto.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors