Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate may keep beautiful killer plant in check

01.03.2010
University of Toronto research

The flowering plant - purple loosestrife - has been heading north since it was first introduced from Europe to the eastern seaboard 150 years ago. This exotic invader chokes out native species and has dramatically altered wetland habitats in North America. But it turns out it may have a vulnerability after all: the northern climate. Canadian scientists have found that adapting to the Great White North carries a severe reproductive penalty that may limit its spread.

Purple loosestrife (Lythrum salicaria) destroys wildlife habitats by displacing native vegetation that provides food, shelter, and breeding areas for wildlife. In urban areas, it invades ditches where it can block or disrupt water flow. It has few pests and diseases, resists various control methods, and plants can produce as many as 3 million seeds a year.

But as this invasive plant has spread north it has run into challenges posed by a shorter growing season, according to a study conducted by Robert Colautti, who recently obtained his Ph.D. from the University of Toronto's Department of Ecology and Evolutionary Ecology. The results are published online this week in the Proceedings of the Royal Society of London, series B (https://rspb.royalsocietypublishing.org/content/firstcit) and featured in Nature (http://www.nature.com/nature/journal/v463/n7284/full/4631002e.html).

The authors used modeling and experimental studies of 20 purple loosestrife populations along a 1200 km latitudinal gradient from Maryland to Timmins, Ontario, representing a one-month difference in growing season. They found that northern populations have become locally adapted and flower earlier in response to a shorter growing season. However, early flowering plants suffer a cost in terms of smaller size and reduced seed production. The reason: a genetic constraint.

"Genes that cause early flowering also reduce plant size, so early flowering and small size evolve together," says Colautti. "Smaller size results in lower seed production, which is likely to limit the spread of purple loosestrife in northern regions."

Co-authors of the study are Colautti's supervisor Professor Spencer Barrett of the Department of Ecology and Evolutionary Biology and Christopher Eckert of Queen's University. The research was funded by the Natural Sciences and Engineering Research Council of Canada, an Ontario Graduate Scholarship and a Premier's Discovery Award from the Ontario Government.

MEDIA CONTACTS:

Robert Colautti
rob.colautti@utoronto.ca
919-972-1514 (cell)
Spencer Barrett
Department of Ecology and Evolutionary Biology
University of Toronto
spencer.barrett@utoronto.ca
416-978-4151
Kim Luke
Communications, Faculty of Arts & Science
University of Toronto
Kim.luke@utoronto.ca

Kim Luke | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>