Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clever fish around the coast of Mallorca Island

19.05.2015

To avoid overfishing and aid in sustainable exploitation, the status of the fish stocks has to be monitored regularly. In many cases stock assessment is based on fishery-dependent data generated from fish markets or creel surveys. The assumption is: the lower the catches in a certain unit of time, the smaller the stock of fish should be.

The scientists Dr. Josep Alós and Prof. Dr. Robert Arlinghaus from the German Leibniz-Institute of Freshwater Ecology and Inland Fisheries and the Humboldt-Universität zu Berlin have now shown that some fish species show enhanced gear-avoidance behaviour in regions with high angling intensity compared to fish exposed to low levels of exploitation near marine protected areas. The consequence is the impression that there are less fish in the sea, which does not necessarily agree with underwater reality.


A clever painted comber in its natural habitat at the coast of Mallorca.

Photographer: Josep Alós


An annular seabream which once was incautious got hooked by the scientists.

Photographer: Josep Alós

The coast of the Spanish Island Mallorca is a holiday paradise for sun worshippers and for those loving water sports. But few are aware of the exiting phenomena that happen below the water surface. Here, a competition between increasingly clever fishes and the catch-addicted fishers takes place.

Within a project funded by the European Union, the Spanish scientist Josep Alós and the German-Spanish scientist Robert Arlinghaus from the German Leibniz-Institute of Freshwater Ecology and Inland Fisheries and the Humboldt-Universität zu Berlin have investigated the fish populations at the coast of Mallorca using novel mathematical models and monitoring methods.

Their research aims at understanding the behaviour of fish in response to recreational fisheries. Based on standardized angling catch methods in a study from 2013 the scientists concluded that marine protected areas host higher fish quantities and bigger fishes than sites with a high exploitation pressure.

A follow-up study now released in the Canadian Journal of Aquatic Sciences, which used underwater video analysis in addition to angling as a method to quantify the fish stock, puts these former results into doubt. The reason for this: clever fishes that escape the pursuit of the anglers without a corresponding decline in fish stock levels.

More anglers means less painted comber on the hook

The research team investigated two fish species popular among recreational anglers along the Mediterranean Sea. Both have the same size and the same habitat but differ in their eating habits. The painted comber (Serranus scriba) show a carnivorous foraging mode and feeds on fish and small crustaceans while the annular seabream (Diplodus annularis) lives on mobile algae and bivalves.

The seabream can afford to carefully examine the potential prey and takes its time moving around the baits, inspecting them and is generally less vulnerable to capture in comparison with the comber. By contrast, the comber evolved a carnivorous life-style: too much hesitation and the mobile prey is gone. As a result of this, the painted comber is much more aggressive towards baits than the annular seabream in their natural habitats where fishing pressure is low, which makes the comber much more vulnerable to be harvested by the anglers.

The recent study by the researchers has now shown a starkly different behaviour in sites where the fishing pressures is high. The researchers studied the behavioural responses towards baits in 54 different locations with the same habitat characteristics but different angling pressures. An autonomous underwater video recording was used to measure the behaviour of the fish when they were exposed to baited hooks.

The researchers were amazed when finding a strong correlation between high fishing intensity and hook-avoidance behaviour of painted comber: this species had starkly changed the behaviour from aggressively attacking the baited hooks in the natural environments with low fishing pressure to being shy in exploited sites where they were able to recognize the fishing gear and avoid hooking. No such response was detected in the seabream. The explanation may involve both genetic change towards increased shyness and learning to avoid future capture.

Less fish on the hooks does not necessarily mean less fish in the sea

Although the catch rates of comber in areas with high fishing intensity were half of those in low exploited and marine protected areas both sites showed similar fish densities as recorded by underwater video. Therefore, the benefits of marine protected areas previously determined by the same authors in 2013 were not supported by underwater video footage now.

“These results suggest that recreational angling may contribute to patterns of hyper depletion in catch rates without a corresponding change in the fish population where catch rates declines stronger than the abundance of fishes”, the first author of the study, Josep Alós, comments.

And further: “Reports on the dramatic decline of fish populations in the ocean which were only based on fishery-dependent data, for example data from the long-line fishery of tuna, cod or swordfish, could also have their cause in enhanced gear-avoidance behaviour of those fishes. We have to rethink our monitoring of fish stocks and take the behavioural changes into account. Maybe some areas with high fishing intensity host more fish than we believe”, concludes study leader Robert Arlinghaus.

Robert Arlinghaus, Josep Alós and Nadja Neumann

Sources (download: www.besatz-fisch.de)

Alós, J., Arlinghaus, R. (2013). Impacts of partial marine protected areas on coastal fish communities exploited by recreational angling. Fisheries Research, 137: 88 - 96.

Alós, J., Palmer, M., Trías, P., Díaz-Gil, C., Arlinghaus, R. (2015). Recreational angling intensity correlates with alteration of vulnerability to fishing in a carnivorous coastal fish species. Canadian Journal of Fisheries and Aquatic Sciences, 72: 217-225.

This work has been funded through a Marie Curies Intra European Fellowship (FP7-MC-IEF) funded by the European Commission, Research Executive Agency (Project title: The role of the behavioural interactions between fish and fishers on fisheries sustainability: ref: 327160) and the Btypes project funded through the Pact for Innovation and Research of the Leibniz-Association.

A clever painted comber in its natural habitat at the coast of Mallorca.Photographer: Josep Alós
An annular seabream which once was incautious got hooked by the scientists.Photographer: Josep Alós

Contact
Dr. Josep Alós
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
Department of Biology and Ecology of Fishes
Müggelseedamm 310
12587 Berlin
alos@igb-berlin.de

Weitere Informationen:

http://www.izw-berlin.de

Saskia Donath | Forschungsverbund Berlin e.V.

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>