Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clever fish around the coast of Mallorca Island

19.05.2015

To avoid overfishing and aid in sustainable exploitation, the status of the fish stocks has to be monitored regularly. In many cases stock assessment is based on fishery-dependent data generated from fish markets or creel surveys. The assumption is: the lower the catches in a certain unit of time, the smaller the stock of fish should be.

The scientists Dr. Josep Alós and Prof. Dr. Robert Arlinghaus from the German Leibniz-Institute of Freshwater Ecology and Inland Fisheries and the Humboldt-Universität zu Berlin have now shown that some fish species show enhanced gear-avoidance behaviour in regions with high angling intensity compared to fish exposed to low levels of exploitation near marine protected areas. The consequence is the impression that there are less fish in the sea, which does not necessarily agree with underwater reality.


A clever painted comber in its natural habitat at the coast of Mallorca.

Photographer: Josep Alós


An annular seabream which once was incautious got hooked by the scientists.

Photographer: Josep Alós

The coast of the Spanish Island Mallorca is a holiday paradise for sun worshippers and for those loving water sports. But few are aware of the exiting phenomena that happen below the water surface. Here, a competition between increasingly clever fishes and the catch-addicted fishers takes place.

Within a project funded by the European Union, the Spanish scientist Josep Alós and the German-Spanish scientist Robert Arlinghaus from the German Leibniz-Institute of Freshwater Ecology and Inland Fisheries and the Humboldt-Universität zu Berlin have investigated the fish populations at the coast of Mallorca using novel mathematical models and monitoring methods.

Their research aims at understanding the behaviour of fish in response to recreational fisheries. Based on standardized angling catch methods in a study from 2013 the scientists concluded that marine protected areas host higher fish quantities and bigger fishes than sites with a high exploitation pressure.

A follow-up study now released in the Canadian Journal of Aquatic Sciences, which used underwater video analysis in addition to angling as a method to quantify the fish stock, puts these former results into doubt. The reason for this: clever fishes that escape the pursuit of the anglers without a corresponding decline in fish stock levels.

More anglers means less painted comber on the hook

The research team investigated two fish species popular among recreational anglers along the Mediterranean Sea. Both have the same size and the same habitat but differ in their eating habits. The painted comber (Serranus scriba) show a carnivorous foraging mode and feeds on fish and small crustaceans while the annular seabream (Diplodus annularis) lives on mobile algae and bivalves.

The seabream can afford to carefully examine the potential prey and takes its time moving around the baits, inspecting them and is generally less vulnerable to capture in comparison with the comber. By contrast, the comber evolved a carnivorous life-style: too much hesitation and the mobile prey is gone. As a result of this, the painted comber is much more aggressive towards baits than the annular seabream in their natural habitats where fishing pressure is low, which makes the comber much more vulnerable to be harvested by the anglers.

The recent study by the researchers has now shown a starkly different behaviour in sites where the fishing pressures is high. The researchers studied the behavioural responses towards baits in 54 different locations with the same habitat characteristics but different angling pressures. An autonomous underwater video recording was used to measure the behaviour of the fish when they were exposed to baited hooks.

The researchers were amazed when finding a strong correlation between high fishing intensity and hook-avoidance behaviour of painted comber: this species had starkly changed the behaviour from aggressively attacking the baited hooks in the natural environments with low fishing pressure to being shy in exploited sites where they were able to recognize the fishing gear and avoid hooking. No such response was detected in the seabream. The explanation may involve both genetic change towards increased shyness and learning to avoid future capture.

Less fish on the hooks does not necessarily mean less fish in the sea

Although the catch rates of comber in areas with high fishing intensity were half of those in low exploited and marine protected areas both sites showed similar fish densities as recorded by underwater video. Therefore, the benefits of marine protected areas previously determined by the same authors in 2013 were not supported by underwater video footage now.

“These results suggest that recreational angling may contribute to patterns of hyper depletion in catch rates without a corresponding change in the fish population where catch rates declines stronger than the abundance of fishes”, the first author of the study, Josep Alós, comments.

And further: “Reports on the dramatic decline of fish populations in the ocean which were only based on fishery-dependent data, for example data from the long-line fishery of tuna, cod or swordfish, could also have their cause in enhanced gear-avoidance behaviour of those fishes. We have to rethink our monitoring of fish stocks and take the behavioural changes into account. Maybe some areas with high fishing intensity host more fish than we believe”, concludes study leader Robert Arlinghaus.

Robert Arlinghaus, Josep Alós and Nadja Neumann

Sources (download: www.besatz-fisch.de)

Alós, J., Arlinghaus, R. (2013). Impacts of partial marine protected areas on coastal fish communities exploited by recreational angling. Fisheries Research, 137: 88 - 96.

Alós, J., Palmer, M., Trías, P., Díaz-Gil, C., Arlinghaus, R. (2015). Recreational angling intensity correlates with alteration of vulnerability to fishing in a carnivorous coastal fish species. Canadian Journal of Fisheries and Aquatic Sciences, 72: 217-225.

This work has been funded through a Marie Curies Intra European Fellowship (FP7-MC-IEF) funded by the European Commission, Research Executive Agency (Project title: The role of the behavioural interactions between fish and fishers on fisheries sustainability: ref: 327160) and the Btypes project funded through the Pact for Innovation and Research of the Leibniz-Association.

A clever painted comber in its natural habitat at the coast of Mallorca.Photographer: Josep Alós
An annular seabream which once was incautious got hooked by the scientists.Photographer: Josep Alós

Contact
Dr. Josep Alós
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)
Department of Biology and Ecology of Fishes
Müggelseedamm 310
12587 Berlin
alos@igb-berlin.de

Weitere Informationen:

http://www.izw-berlin.de

Saskia Donath | Forschungsverbund Berlin e.V.

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>