Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clemson researchers collect and reuse enzymes while maintaining bioactivity

09.08.2012
Clemson University researchers are collecting and harvesting enzymes while maintaining the enzyme’s bioactivity. Their work, a new model system that may impact cancer research, is published in the journal Small.
Enzymes are round proteins produced by living organisms that increase the rate of chemical reactions.

“We found a robust and simple way of attracting specific enzymes, concentrating them and reusing them,” said Stephen Foulger, professor in the School of Materials Science and Engineering at Clemson. “The enzymes are still functional after being harvested.”

Isolating a single type of protein from a complex mixture is the most difficult aspect of the purification process. It is vital to determine the function, structure and interactions of the protein.

The researchers baited a nanoparticle to capture and recycle an enzyme. They found a way to attach an enzyme’s target on the surface of a particle, allow the enzyme to bind to it, remove the particle and determine that the enzyme is still functional.

“We took a protein that was being produced in a soil and placed its food source on the outside of a nanoparticle and the protein essentially grabbed onto the food source,” said Foulger. “We froze the enzyme in place and removed the particle and thus found a commercially viable way to harvest these proteins."

"This baited particle approach provides a very efficient means for isolating complex enzyme systems for use in biotechnology," said Vincent Rotello, a chemistry professor at the University of Massachusetts Amherst and leading researcher in the field. "This method also provides considerable promise for biomedical applications."

The research established a universal model for concentrating and extracting known enzyme pairings, but it can be an invaluable tool in recognizing unknown ones.

“This model is foreshadowing for what we’re doing with cancer research because we’re beginning to focus on the 'outside' of nanoparticles to sequester specific proteins that direct cancer cell growth,” said Foulger.

The researchers’ goal is to alter the cellular concentration of critical proteins in cancer to disrupt the cell's ability to spread, thereby controlling its growth in the body.

Brian Mullen | EurekAlert!
Further information:
http://www.clemson.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>