Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clemson researchers collect and reuse enzymes while maintaining bioactivity

09.08.2012
Clemson University researchers are collecting and harvesting enzymes while maintaining the enzyme’s bioactivity. Their work, a new model system that may impact cancer research, is published in the journal Small.
Enzymes are round proteins produced by living organisms that increase the rate of chemical reactions.

“We found a robust and simple way of attracting specific enzymes, concentrating them and reusing them,” said Stephen Foulger, professor in the School of Materials Science and Engineering at Clemson. “The enzymes are still functional after being harvested.”

Isolating a single type of protein from a complex mixture is the most difficult aspect of the purification process. It is vital to determine the function, structure and interactions of the protein.

The researchers baited a nanoparticle to capture and recycle an enzyme. They found a way to attach an enzyme’s target on the surface of a particle, allow the enzyme to bind to it, remove the particle and determine that the enzyme is still functional.

“We took a protein that was being produced in a soil and placed its food source on the outside of a nanoparticle and the protein essentially grabbed onto the food source,” said Foulger. “We froze the enzyme in place and removed the particle and thus found a commercially viable way to harvest these proteins."

"This baited particle approach provides a very efficient means for isolating complex enzyme systems for use in biotechnology," said Vincent Rotello, a chemistry professor at the University of Massachusetts Amherst and leading researcher in the field. "This method also provides considerable promise for biomedical applications."

The research established a universal model for concentrating and extracting known enzyme pairings, but it can be an invaluable tool in recognizing unknown ones.

“This model is foreshadowing for what we’re doing with cancer research because we’re beginning to focus on the 'outside' of nanoparticles to sequester specific proteins that direct cancer cell growth,” said Foulger.

The researchers’ goal is to alter the cellular concentration of critical proteins in cancer to disrupt the cell's ability to spread, thereby controlling its growth in the body.

Brian Mullen | EurekAlert!
Further information:
http://www.clemson.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>