Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clemson bioengineer uses nanoparticles to target drugs

12.10.2009
Clemson bioengineer Frank Alexis is designing new ways to target drugs and reduce the chances for side effects.

Pharmaceutical commercials can cause the unsettling feeling that if the disease doesn't kill, the cure will, what with a drug's long list of side effects and warnings. Many therapeutic drugs administered by pill, cream, syringe, IV or liquid can be a hit or miss delivery system. Researchers report that only 1 of 100,000 molecules of an intravenous drug make it to the intended spot in the body.

"The big issues for making medicines more effective are getting drugs to where they are needed and keeping them from breaking down as they circulate through the body," said Alexis. "A way to improve targeting a drug and preventing it from being passed out of the body is putting it in envelopes — putting the drug inside something to protect it until it's at the right spot."

The envelopes Alexis uses are nanoparticles. Think of an M&M, with the nanoparticle being the hard outer candy shell and the chocolate being the medicine. The goal would be the same as for an M&M — to melt in the right place.

Nanotechnology operates on the molecular level. It involves engineering materials on such a small scale that the results can be seen only with electron and atomic force microscopes. Nano-engineers take advantage of natural forces — positive and negative electrical charges, attraction and repulsion, surface texture — to have materials self assemble.

"You would be surprised how we mimic what nature does," said Alexis. It is setting off a storm of innovations in many fields — biology, medicine, material science, computers, manufacturing, physics.

"Nanoparticles can be modified many ways,” said Alexis. “They can be coated so that they can be durable and stable. They can be patterned so that they match up like a key and a lock to connect to certain cells, tissues and organs. Some drugs are not taken up because of their physical and chemical properties."

A handful of nanoparticle medicines already have been approved for use treating diseases, particularly cancers. Alexis and other bioengineers are ushering in a new era in medicine.

A challenge for oral medicines, for example, is getting them to do some good before the body destroys them. A patient's metabolism can do its job too well taking a drug out of circulation.

Called "first-pass metabolism," the liver breaks down a drug during its first trip circulating through the body. The result is doctors must use greater amounts of oral medicines to achieve the therapeutic effect. Negative reactions from the higher doses or the inconvenience from prolonged treatment cause many patients to stop taking their medicines.

Nanoparticles can be made to survive the first pass. The particles also can be made to get beyond the body's immune system. Multi-layers on the nanoparticles or nanoshells can resist the body's defenses, enabling the medicine to last longer or reach the intended location.

Dendrimers are nanoparticles that could become the Swiss Army knives of targeted drug delivery. The particles can be made so that a number of different kinds of molecules could be attached to it. One group of molecules could fight the disease, another could enhance images to track the drug, a third could carry a chemical trigger to release the medicine by command from outside the body, another, still, that could send signals about results.

"We are moving ahead in nanoscience in laboratories throughout the world," said Alexis. "Nanoparticle functionalities become more and more complex and the next step is for the research to develop technologies allowing their transfer from the research bench to a pharmaceutical drug. New ways of targeting drugs that will be more effective and safe and more agreeable to patients is just over the horizon."

Peter Kent | EurekAlert!
Further information:
http://www.clemson.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>