Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clear vision despite a heavy head - model explains the choice of simple movements

10.11.2011
Simple actions are most often performed in the same manner, despite countless movement possibilities. A mathematical model explains why this is the case.

Using the example of gaze movements, scientists of the Ludwig-Maximilians-University Munich (LMU) and the Bernstein Center Munich show that we unconsciously choose those movements that minimize end point variability. This is true even if the head’s rotational inertia is experimentally altered. The findings could be used to generate more natural robot movements and to better adapt prosthetic devices to human movements.


Weights at the ends of the sticks alter the head‘s rotational inertia. A mathematical model predicts which eye and head movements are chosen during gaze shifts in this situation. Image: Nadine Lehnen, LMU Munich

In one respect, handling a computer mouse is just like looking in the rearview mirror: well established movements help the brain to concentrate on the essentials. But just a simple gaze shift to a new target bears the possibility of an almost infinite number of combinations of eye and head movement: how fast do we move eye and head? How much does the eye rotate, how much the head? Until now, it was unclear why the brain chooses a particular movement option from the set of all possible combinations. A team led by Dr. Stefan Glasauer (LMU), project leader at the Bernstein Center Munich, has now developed a mathematical model that accurately predicts horizontal gaze movements. Besides eye and head contribution to the gaze shift, it also predicts movement duration and velocity.

In contrast to most previous models, the researchers considered the movement of head and eye to the target as well as the counter-movement of the eye after the gaze has reached the target, but the head is still moving. “The longer the movement, the more perturbations add up,” says Glasauer. “However, the faster the movement, the more errors arise from acceleration and large muscle forces.” On the basis of this information, the Munich researchers calculated eye and head movements and determined the movement combination that caused the fewest disturbances. This movement matched that chosen by healthy volunteers - not only in natural conditions but also in an experiment where subjects’ head movements were altered by an experimental increase in the head’s rotational inertia (see picture).

These findings could help teach robots humanoid movements and thus facilitate interaction with service robots. It may also be helpful in the construction of “smart” prostheses. These devices could offer the carrier a choice of movements that come closest to the natural human ones. For the next step, Glasauer and colleagues want to examine three-dimensional eye-head movements and aim to better understand simple movement learning.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original publication:
Saglam M, Lehnen N, Glasauer S (2011): Optimal control of natural eye-head movements minimizes the impact of noise. J Neurosci. 31(45):16185–16193
For further information please contact:
Dr. Stefan Glasauer
sglasauer@nefo.med.uni-muenchen.de
Bernstein Center Munich and
Ludwig-Maximilians-Universität München
Institute of Clinical Neurosciences
Marchioninistr. 23
81377 Munich, Germany
Phone: +49-89-7095-4839

Dr. Simone Cardoso de Oliveira | idw
Further information:
http://www.bccn-munich.de/
http://www.nncn.de/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>