Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clamorous city blackbirds

14.01.2013
Birds can sing louder at higher frequencies and thereby make themselves heard in traffic noise

Animals have developed a variety of strategies for dealing with increasing noise pollution in their habitats. It is known, for example, that many urban birds sing at a high pitch to differentiate their song from the low-frequency sound of road traffic.


Blackbirds also find an abundant food supply in the city. © Michael Dvorak

However, as scientists from the Max Planck Institute for Ornithology discovered, this is just a useful side effect. The real reason for this behaviour is that songs at a higher pitch are also automatically louder. The birds can make themselves heard far better in city noise by increasing the volume of their song than by raising its frequency.

Despite the numerous unfavourable environmental conditions they encounter there, many wild animals have colonised cities as a new habitat. In cities they must deal with greater numbers of humans and with more light and noise pollution than they encounter in rural settings. However, the urban habitat also offers certain advantages, for example a more abundant supply of food and new breeding options. Many animals have thus adapted surprisingly well to city life.

To attract mating partners and defend their territories, urban robins sing in the latter night when the traffic noise decreases after the evening rush. Many other bird species, including blackbirds, sing in urban environments at a higher pitch. So their song is easier to detect in the lower-frequency traffic noise.

However, as a group of scientists from the Max Planck Institute for Ornithology in Seewiesen and Radolfzell has discovered, this is just half the truth. They studied urban blackbirds in the city of Vienna and country blackbirds in the nearby Vienna Woods. Additionally, they raised birds by hand at the Max Planck Institute and investigated the correlations between the frequency and amplitude of their song under controlled conditions. It emerged from this research that the animals were able to produce higher tones at higher amplitudes. In the city, blackbirds sing preferably at these high frequencies that they can produce particularly loudly.

In a further step, the researchers examined which effect is better suited to avoiding the acoustic masking by traffic noise: the higher frequency or the higher amplitude that results from it. “The higher volume of the higher-pitched song is more effective than the higher frequency,” says Erwin Nemeth, first author of the study. “So we assume that the increased volume is the main cause of the higher frequency singing by city birds.” Henrik Brumm, the leader of the research team, adds: “By actively selecting high-frequency sounds, the city birds can increase their capacity to sing loudly and in this way counteract the acoustic masking of their song by the ambient noise.”

Contact

Dr. Henrik Brumm,
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-355
Email: brumm@­orn.mpg.de
Dr. Erwin Nemeth,
Research Group Communication and Social Behaviour
Max Planck Institute for Ornithology, Seewiesen
Phone: +43 664 4568-191
Email: enemeth@­orn.mpg.de
Dr. Sabine Spehn,
Press and Public Relations Seewiesen
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-421
Fax: +49 8157 932-209
Email: pr_seewiesen@­orn.mpg.de
Original publication
Erwin Nemeth, Nadia Pieretti, Sue Anne Zollinger, Nicole Geberzahn, Jesko Partecke, Ana Catarina Miranda and Henrik Brumm
Bird song and anthropogenic noise: Vocal constraints may explain why birds sing higher frequency songs in cities

Proceedings of the Royal Society B. Published online January 8, 2013 doi: 10.1098/rspb.2012.2798

Dr. Henrik Brumm | Max-Planck-Institute
Further information:
http://www.mpg.de
http://www.mpg.de/6814595/city-blackbirds-traffic-noise

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>