Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clamorous city blackbirds

14.01.2013
Birds can sing louder at higher frequencies and thereby make themselves heard in traffic noise

Animals have developed a variety of strategies for dealing with increasing noise pollution in their habitats. It is known, for example, that many urban birds sing at a high pitch to differentiate their song from the low-frequency sound of road traffic.


Blackbirds also find an abundant food supply in the city. © Michael Dvorak

However, as scientists from the Max Planck Institute for Ornithology discovered, this is just a useful side effect. The real reason for this behaviour is that songs at a higher pitch are also automatically louder. The birds can make themselves heard far better in city noise by increasing the volume of their song than by raising its frequency.

Despite the numerous unfavourable environmental conditions they encounter there, many wild animals have colonised cities as a new habitat. In cities they must deal with greater numbers of humans and with more light and noise pollution than they encounter in rural settings. However, the urban habitat also offers certain advantages, for example a more abundant supply of food and new breeding options. Many animals have thus adapted surprisingly well to city life.

To attract mating partners and defend their territories, urban robins sing in the latter night when the traffic noise decreases after the evening rush. Many other bird species, including blackbirds, sing in urban environments at a higher pitch. So their song is easier to detect in the lower-frequency traffic noise.

However, as a group of scientists from the Max Planck Institute for Ornithology in Seewiesen and Radolfzell has discovered, this is just half the truth. They studied urban blackbirds in the city of Vienna and country blackbirds in the nearby Vienna Woods. Additionally, they raised birds by hand at the Max Planck Institute and investigated the correlations between the frequency and amplitude of their song under controlled conditions. It emerged from this research that the animals were able to produce higher tones at higher amplitudes. In the city, blackbirds sing preferably at these high frequencies that they can produce particularly loudly.

In a further step, the researchers examined which effect is better suited to avoiding the acoustic masking by traffic noise: the higher frequency or the higher amplitude that results from it. “The higher volume of the higher-pitched song is more effective than the higher frequency,” says Erwin Nemeth, first author of the study. “So we assume that the increased volume is the main cause of the higher frequency singing by city birds.” Henrik Brumm, the leader of the research team, adds: “By actively selecting high-frequency sounds, the city birds can increase their capacity to sing loudly and in this way counteract the acoustic masking of their song by the ambient noise.”

Contact

Dr. Henrik Brumm,
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-355
Email: brumm@­orn.mpg.de
Dr. Erwin Nemeth,
Research Group Communication and Social Behaviour
Max Planck Institute for Ornithology, Seewiesen
Phone: +43 664 4568-191
Email: enemeth@­orn.mpg.de
Dr. Sabine Spehn,
Press and Public Relations Seewiesen
Max Planck Institute for Ornithology, Seewiesen
Phone: +49 8157 932-421
Fax: +49 8157 932-209
Email: pr_seewiesen@­orn.mpg.de
Original publication
Erwin Nemeth, Nadia Pieretti, Sue Anne Zollinger, Nicole Geberzahn, Jesko Partecke, Ana Catarina Miranda and Henrik Brumm
Bird song and anthropogenic noise: Vocal constraints may explain why birds sing higher frequency songs in cities

Proceedings of the Royal Society B. Published online January 8, 2013 doi: 10.1098/rspb.2012.2798

Dr. Henrik Brumm | Max-Planck-Institute
Further information:
http://www.mpg.de
http://www.mpg.de/6814595/city-blackbirds-traffic-noise

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>