Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circulating Immune Cells as Biomarkers for Idiopathic Pulmonary Fibrosis

02.09.2016

Researchers at Helmholtz Zentrum München, a partner in the German Center for Lung Research (DZL), have discovered that the number of myeloid-derived suppressor cells (MDSC) is increased in the blood of patients with idiopathic pulmonary fibrosis (IPF). The higher the number of MDSC, the more limited the lung function. The findings on this new biomarker have now been published in the ‘European Respiratory Journal’.

Patients with fibrotic lung diseases*, such as idiopathic pulmonary fibrosis (IPF), show progressive worsening of lung function with increased shortness of breath and dry cough. To-date, this process is irreversible, which is why scientists are searching for novel biomarkers or indicators, which enable earlier diagnosis of this disease, with the aim to better interfere with disease progression.


Staining of surface molecules (CD11 in red, CD33 in green) on cells in lung tissue, nuclei in blue. MDSC are positive for both surface markers and consequently appear orange (arrow).

Source: Helmholtz Zentrum München

A team of scientists at the Comprehensive Pneumology Center (CPC) at Helmholtz Zentrum München headed by Professor Oliver Eickelberg, Chairman of the CPC and Director of the Institute of Lung Biology as well as the DZL at the Munich partner site, have now discovered that myeloid-derived suppressor cells (MDSC)** may serve as such biomarkers. “The role of MDSC has been most extensively studied in cancer, where they suppress the immune system and contribute to a poor prognosis,” explained first author Isis Fernandez, MD. The current study suggests that similar mechanisms are also at work in IPF.

In collaboration with the Department of Internal Medicine V (Director: Professor Jürgen Behr) of the Munich University Hospital, the team examined blood samples of 170 study participants, including 69 IPF patients, in terms of the composition of circulating immune cell types. In each patient, these were correlated with lung function. Strikingly, the MDSC count in IPF patients was significantly higher than in the healthy control group. At the same time, the researchers observed that there was an inverse correlation between lung function and circulating MDSC counts: the poorer the lung function, the higher the MDSC count. In control groups of patients with chronic obstructive pulmonary disease (COPD) or other interstitial lung diseases, this inverse correlation was not found. “We conclude that the number of MDSC reflects the course of the disease, especially in IPF,” said Fernandez.

To obtain an indication of whether the cells themselves could be the cause of the deterioration in lung function, the researchers measured the activity of genes that are typically expressed by immune cells. They found that these genes were expressed less frequently in samples that exhibited high MDSC counts. This indicates that MDSC – similar to their role in cancer – also compromise the immune system in IPF, according to the scientists.

A look into the lung tissue of IPF patients supports this assumption. “We were able to show that MDSC are primarily found in fibrotic niches of IPF lungs characterized by increased interstitial tissue and scarring, that is, in regions where the disease is very pronounced,” said Eickelberg. “As a next step, we seek to investigate whether the presence of MDSC can serve as a biomarker to detect IPF and to determine how pronounced it is.” In addition, the researchers want to investigate the mechanisms of accumulation in more detail. “Controlling accumulation or expansion of MDSC or blocking their suppressive functions may represent a promising treatment options for patients with IPF,” said Eickelberg.

Further Information

Background:
*Fibrotic lung diseases are characterized by an increase of connective tissue in the lung, which hardens and becomes scarred. This stiffening is accompanied by a disturbed regeneration of the lung which in turn is associated with deteriorating lung function. The quality of life for these the patients is significantly limited.

**Myeloid-derived suppressor cells are a heterogeneous group of immune cells of the hematopoietic system, which in the healthy system play a role in tissue renewal and immune response.

Original Publication:
Fernandez, I. et al. (2016). Peripheral blood myeloid-derived suppressor cells reflect disease status in idiopathic pulmonary fibrosis, European Respiratory Journal, DOI: 10.1183/13993003.01826-2015
http://erj.ersjournals.com/content/early/2016/08/31/13993003.01826-2015

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en/index.html

The Comprehensive Pneumology Center (CPC) is a joint research project of the Helmholtz Zentrum München, the Ludwig-Maximilians-Universität with its University Hospital and the Asklepios Fachkliniken München-Gauting. The CPC's objective is to conduct research on chronic lung diseases in order to develop new diagnosis and therapy strategies. The CPC maintains a focus on experimental pneumology with the investigation of cellular, molecular and immunological mechanisms involved in lung diseases. The CPC is one of five sites of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL). http://www.helmholtz-muenchen.de/en/ilbd/index.html

Munich University Hospital (LMU) treats around 500,000 outpatients, inpatients and semi-residential patients each year at its Großhadern and City Centre Campuses. Just over 2,000 beds are available to its 28 specialist clinics, twelve institutes and seven departments, and its 47 interdisciplinary centres. Of a total of 9,500 employees, around 1,600 are doctors and 3,200 are nursing staff. Munich University Hospital has been a public-law institution since 2006. Together with the Medical Faculty of Ludwig Maximilians University, Munich University Hospital is involved in four special research areas of the German Research Foundation (SFB 684, 914, 1054, 1123), three Transregios (TRR 127, 128, 152) belonging to Clinical Research Group 809, and two Graduate Colleges belonging to the German Research Foundation (GK 1091, 1202). This is in addition to the Center for Integrated Protein Sciences (CIPSM), Munich Center of Advanced Photonics (MAP), Nanosystems Initiative Munich (NIM) and Munich Cluster for Systems Neurology (SyNergy) – all institutes of excellence – and the Graduate School of Systemic Neurosciences (GSN-LMU), the Graduate School of Quantitative Biosciences Munich (QBM) and the Graduate School Life Science Munich (LSM). http://www.klinikum.uni-muenchen.de

The German Center for Lung Research (DZL) pools German expertise in the field of pulmonology research and clinical pulmonology. The association’s head office is in Giessen. The aim of the DZL is to find answers to open questions in research into lung diseases by adopting an innovative, integrated approach and thus to make a sizeable contribution to improving the prevention, diagnosis and individualized treatment of lung disease and to ensure optimum patient care. http://www.dzl.de/index.php/en

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Prof. Dr. Oliver Eickelberg, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Max-Lebsche-Platz 31, 81377 München, Tel. +49 89 3187 4666 - E-mail: oliver.eickelberg@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: CPC DZL Environmental Health Helmholtz MDSC lung diseases lung function

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>