Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circulating Immune Cells as Biomarkers for Idiopathic Pulmonary Fibrosis

02.09.2016

Researchers at Helmholtz Zentrum München, a partner in the German Center for Lung Research (DZL), have discovered that the number of myeloid-derived suppressor cells (MDSC) is increased in the blood of patients with idiopathic pulmonary fibrosis (IPF). The higher the number of MDSC, the more limited the lung function. The findings on this new biomarker have now been published in the ‘European Respiratory Journal’.

Patients with fibrotic lung diseases*, such as idiopathic pulmonary fibrosis (IPF), show progressive worsening of lung function with increased shortness of breath and dry cough. To-date, this process is irreversible, which is why scientists are searching for novel biomarkers or indicators, which enable earlier diagnosis of this disease, with the aim to better interfere with disease progression.


Staining of surface molecules (CD11 in red, CD33 in green) on cells in lung tissue, nuclei in blue. MDSC are positive for both surface markers and consequently appear orange (arrow).

Source: Helmholtz Zentrum München

A team of scientists at the Comprehensive Pneumology Center (CPC) at Helmholtz Zentrum München headed by Professor Oliver Eickelberg, Chairman of the CPC and Director of the Institute of Lung Biology as well as the DZL at the Munich partner site, have now discovered that myeloid-derived suppressor cells (MDSC)** may serve as such biomarkers. “The role of MDSC has been most extensively studied in cancer, where they suppress the immune system and contribute to a poor prognosis,” explained first author Isis Fernandez, MD. The current study suggests that similar mechanisms are also at work in IPF.

In collaboration with the Department of Internal Medicine V (Director: Professor Jürgen Behr) of the Munich University Hospital, the team examined blood samples of 170 study participants, including 69 IPF patients, in terms of the composition of circulating immune cell types. In each patient, these were correlated with lung function. Strikingly, the MDSC count in IPF patients was significantly higher than in the healthy control group. At the same time, the researchers observed that there was an inverse correlation between lung function and circulating MDSC counts: the poorer the lung function, the higher the MDSC count. In control groups of patients with chronic obstructive pulmonary disease (COPD) or other interstitial lung diseases, this inverse correlation was not found. “We conclude that the number of MDSC reflects the course of the disease, especially in IPF,” said Fernandez.

To obtain an indication of whether the cells themselves could be the cause of the deterioration in lung function, the researchers measured the activity of genes that are typically expressed by immune cells. They found that these genes were expressed less frequently in samples that exhibited high MDSC counts. This indicates that MDSC – similar to their role in cancer – also compromise the immune system in IPF, according to the scientists.

A look into the lung tissue of IPF patients supports this assumption. “We were able to show that MDSC are primarily found in fibrotic niches of IPF lungs characterized by increased interstitial tissue and scarring, that is, in regions where the disease is very pronounced,” said Eickelberg. “As a next step, we seek to investigate whether the presence of MDSC can serve as a biomarker to detect IPF and to determine how pronounced it is.” In addition, the researchers want to investigate the mechanisms of accumulation in more detail. “Controlling accumulation or expansion of MDSC or blocking their suppressive functions may represent a promising treatment options for patients with IPF,” said Eickelberg.

Further Information

Background:
*Fibrotic lung diseases are characterized by an increase of connective tissue in the lung, which hardens and becomes scarred. This stiffening is accompanied by a disturbed regeneration of the lung which in turn is associated with deteriorating lung function. The quality of life for these the patients is significantly limited.

**Myeloid-derived suppressor cells are a heterogeneous group of immune cells of the hematopoietic system, which in the healthy system play a role in tissue renewal and immune response.

Original Publication:
Fernandez, I. et al. (2016). Peripheral blood myeloid-derived suppressor cells reflect disease status in idiopathic pulmonary fibrosis, European Respiratory Journal, DOI: 10.1183/13993003.01826-2015
http://erj.ersjournals.com/content/early/2016/08/31/13993003.01826-2015

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en/index.html

The Comprehensive Pneumology Center (CPC) is a joint research project of the Helmholtz Zentrum München, the Ludwig-Maximilians-Universität with its University Hospital and the Asklepios Fachkliniken München-Gauting. The CPC's objective is to conduct research on chronic lung diseases in order to develop new diagnosis and therapy strategies. The CPC maintains a focus on experimental pneumology with the investigation of cellular, molecular and immunological mechanisms involved in lung diseases. The CPC is one of five sites of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL). http://www.helmholtz-muenchen.de/en/ilbd/index.html

Munich University Hospital (LMU) treats around 500,000 outpatients, inpatients and semi-residential patients each year at its Großhadern and City Centre Campuses. Just over 2,000 beds are available to its 28 specialist clinics, twelve institutes and seven departments, and its 47 interdisciplinary centres. Of a total of 9,500 employees, around 1,600 are doctors and 3,200 are nursing staff. Munich University Hospital has been a public-law institution since 2006. Together with the Medical Faculty of Ludwig Maximilians University, Munich University Hospital is involved in four special research areas of the German Research Foundation (SFB 684, 914, 1054, 1123), three Transregios (TRR 127, 128, 152) belonging to Clinical Research Group 809, and two Graduate Colleges belonging to the German Research Foundation (GK 1091, 1202). This is in addition to the Center for Integrated Protein Sciences (CIPSM), Munich Center of Advanced Photonics (MAP), Nanosystems Initiative Munich (NIM) and Munich Cluster for Systems Neurology (SyNergy) – all institutes of excellence – and the Graduate School of Systemic Neurosciences (GSN-LMU), the Graduate School of Quantitative Biosciences Munich (QBM) and the Graduate School Life Science Munich (LSM). http://www.klinikum.uni-muenchen.de

The German Center for Lung Research (DZL) pools German expertise in the field of pulmonology research and clinical pulmonology. The association’s head office is in Giessen. The aim of the DZL is to find answers to open questions in research into lung diseases by adopting an innovative, integrated approach and thus to make a sizeable contribution to improving the prevention, diagnosis and individualized treatment of lung disease and to ensure optimum patient care. http://www.dzl.de/index.php/en

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Prof. Dr. Oliver Eickelberg, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Max-Lebsche-Platz 31, 81377 München, Tel. +49 89 3187 4666 - E-mail: oliver.eickelberg@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: CPC DZL Environmental Health Helmholtz MDSC lung diseases lung function

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>