Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On...off...on...off... The circuitry of insulin-releasing cells

10.12.2010
Johns Hopkins researchers uncover potential inroad to diabetes treatment

A myriad of inputs that report on a body’s health bombard pancreatic beta cells continuously, and these cells must consider all signals and “decide” when and how much insulin to release to maintain balance in blood sugar, for example.

Reporting in Nature Chemical Biology last month, researchers at the Johns Hopkins University School of Medicine have teased out how these cells interpret incoming signals and find that three proteins relay signals similar to an electrical circuit.

“Pancreatic beta cells are influenced by hormonal, metabolic and electrical signals and something must be integrating all of these inputs to determine how to generate the cell’s output,” says Jin Zhang, Ph.D., an associate professor of pharmacology and molecular sciences at Johns Hopkins. “We have discovered a tunable circuit that may control the behavior of the cell.”

According to Zhang, typically PKA (protein kinase A) acts as a switch and turns on and does what it needs to do until it’s done and turns off. The team initially noticed that PKA was switching on and off while observing fluorescently tagged live cells under a microscope. “It was so interesting and uncharacteristic we had to study it further,” says Zhang.

So the team started by again recording video of live cells over the course of an hour. They took advantage of so-called biosensors that they engineered, which are protein tags that glow one color when turned off and another color when turned on. By inserting a PKA biosensor into these cells, they were able to see when PKA was turned off and on. They found that PKA does turn on and off in regular intervals—about three cycles every 10 minutes.

“We already knew that calcium levels in these cells oscillate and this controls the release of insulin,” says Zhang. “So we were curious to see how the PKA oscillation we observed was linked to calcium.”

Using a dye that changes color when calcium levels are high, the team again observed live cells and found that PKA oscillations and calcium oscillations were in register with each other—every time PKA turned on, calcium peaked a short while later, and PKA would turn off almost immediately, overlapping with a decrease in calcium. “This too was surprising because turning off PKA in other types of cells normally is slow, on the order of tens of minutes, but in these cells it was fast, on the order of just a few minutes,” says Zhang.

The team then turned to colleagues in biomedical engineering at the Johns Hopkins Whiting School of Engineering to build a mathematical model of this circuit to better study and predict how these oscillating signals are used in a cell. Culling everything that is known about PKA, calcium and another chemical in the cell that affects PKA activity, Levchenko’s team came up with a model where all three components are closely linked by cross-talk so that the oscillatory behavior of each was determined by the activity of the other two. “Human engineers have figured out a long time ago that oscillating signals can carry more information than the steady ones, and it was fascinating to see that cells might have arrived at the same solution, too,” says Andre Levchenko, Ph.D., an associate professor of biomedical engineering at Johns Hopkins.

The model predicted that blocking PKA activity would stop calcium levels from oscillating as well; so the team treated cells with a chemical that blocks PKA and found that indeed, calcium levels stopped changing. The model also predicted that increasing PKA activity would change the frequency of calcium oscillations; again, adding a different chemical that increases PKA activity in turn increased calcium oscillation frequency. “The mathematical model enabled us to do more informed experiments and uncover even more about the activity of these molecules in the cell,” says Zhang.

So what does this all mean? According to Zhang and Levchenko, they may have come up with an explanation for a long-standing mystery in the field. Low PKA oscillation frequency tunes PKA to act locally, in the immediate region where it is anchored in the cell. And high PKA oscillation frequency tunes PKA to work more globally throughout the cell, to generate a different response.

The discovery of PKA’s oscillating activity and its involvement in this protein circuit in pancreatic beta cells is intriguing to Zhang, who hopes that this finding can lead to repairing deficient cells in treating diabetes. “This type of circuit-like control also may be more widespread among different kinds of cells,” says Zhang. “We’re eager to see what our new biosensors can teach us.”

This study was funded by the National Institutes of Health.

Authors on the paper are Qiang Ni, Ambhighainath Ganesan, Nwe-Nwe Aye-Han, Xinxin Gao, Michael Allen, Andre Levchenko and Jin Zhang, all of Johns Hopkins.

On the Web:
Nature Chemical Biology: http://www.nature.com/nchembio/index.html
Jin Zhang: http://neuroscience.jhu.edu/JinZhang.php
Andre Levchenko: http://www.bme.jhu.edu/people/primary.php?id=391
Media Contacts:
Audrey Huang; 410-614-5105; audrey@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu
Maryalice Yakutchik; 443-287-2251; myakutc1@jhmi.edu

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>