Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circuitry of fear identified

12.11.2010
Neurobiologists at the Friedrich Miescher Institute for Biomedical Research have identified, for the first time, clearly defined neural circuits responsible for the processing of fear states. These findings could ultimately help people suffering from post-traumatic stress disorder or anxiety disorders. The scientists' results have been published in the latest issue of Nature.

Fear arises in the almond-shaped brain structure known as the amygdala. It is the amygdala which processes the strange noise, shadowy figure or scary face and not only triggers palpitations or nausea but can also cause us to flee or freeze. That much has long been known about the function of this part of the brain.

What remains largely unclear, however, is precisely how fear develops, and which of the countless neurons in the amygdaloid region are involved in this process. But finding answers to these questions is vital for those who wish to improve the quality of life for people suffering as a result of traumatic experiences. In particular, patients with post-traumatic stress or anxiety disorders could benefit from the elucidation of neural processes in the amygdala.

Neurobiologists at the Friedrich Miescher Institute for Biomedical Research (FMI, part of the Novartis Research Foundation) have become the first to identify neural pathways and types of neurons in the amygdala which play a key role in the behavioral expression of fear. In two studies published in the latest issue of Nature, they show that there are clearly defined types of neurons in the amygdala which fulfill specific functions in the processing of fear inputs and subsequent fear responses. These cell types are organized in circuits, connecting neurons and various areas within the amygdala.

In collaboration with colleagues at the California Institute of Technology, the FMI neurobiologists went on to show that one of the cell types produces a signaling protein known as protein kinase C delta. This has provided the researchers with a marker for cells in the amygdala which directly regulate the expression of fear. They can now manipulate and study the behavior of these cells under a variety of conditions. Commenting on the relevance of their findings, FMI Group Leader Andreas Lüthi, who led the study, said: "We now have at our disposal a molecular tool which should allow us to gain a better understanding of processes in the amygdala - and also of phobias and post-traumatic stress disorders."

Lastly, the studies also revealed that these circuits play an important role in the generalization of fear. The same neurons are involved when fear becomes divorced from the original situation and becomes increasingly general. This may mean, for example, that some people's feelings of claustrophobia in an elevator will develop into a fear of crowds and, finally, fear of leaving the house. Patients with disorders of this kind live in a state of constant anxiety, which remains difficult to treat.

New methods shedding new light on neural circuits
For decades, the function of nerve cells has been studied with the aid of electrophysiological methods, which allow neural excitation to be measured in a particular region of the brain. Over the last few years, this method has increasingly been combined with newer, more powerful approaches. With so-called optogenetic methods, neurons can be stimulated selectively, rapidly and reversibly. This involves the use of light-sensitive membrane proteins from algae, such as channelrhodopsin, which are stimulated by light so as to activate neurons. Membrane proteins can be produced in selected neurons or selected neural circuits, making it possible to study clearly defined individual neurons. At the FMI, optogenetic approaches are being exploited and continuously refined by a number of neurobiology research groups. As well as being used in the work described above, this method has enabled FMI scientists to gain new insights into visual and olfactory processes.
Contact
Dr. Andreas Lüthi, andreas.luthi@fmi.ch, Tel. +41 61 697 82 71.
Original Publication
Ciocchi S et al. (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 468:277-82
» Online publication
Haubensak W et al. (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature, 468:270-6

» Online publication

About the FMI
The Friedrich Miescher Institute for Biomedical Research (FMI), based in Basel, Switzerland, is a world-class center for basic research in life sciences. It was founded in 1970 as a joint effort of two Basel-based pharmaceutical companies and is now part of the Novartis Research Foundation. The FMI is devoted to the pursuit of fundamental biomedical research. Areas of expertise are neurobiology, growth control, which includes signaling pathways, and the epigenetics of stem cell development and cell differentiation. The institute counts 320 collaborators. The FMI also offers training in biomedical research to PhD students and postdoctoral fellows from around the world. In addition the FMI is affiliated with the University of Basel. The Director of the FMI since 2004 is Prof. Susan Gasser. This year, the FMI is celebrating its 40th anniversary.

Andreas Luethi | EurekAlert!
Further information:
http://www.fmi.ch

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>