Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circadian surprise: A heat sensor for body-clock synchronization

02.11.2009
New research on the fruit-fly brain points to a possible mechanism by which temperature influences the body clock, according to scientists from Queen Mary, University of London.

Although much is known about how light affects the body clock - also known at the circadian clock - it is not well understood which cells or organs sense daily temperature changes or how temperature signals reach the part of the brain that contains the circadian clock.

A variety of organisms, including insects and humans, have evolved an internal circadian clock to regulate patterns of behaviour throughout the day - for example sleep, appetite, alertness and concentration.

Senior study author Dr Ralf Stanewsky, from Queen Mary's School of Biological and Chemical Sciences, explains: "Given the substantial similarity between the fly and mammalian clock, our studies might also help to understand the human circadian clock and in the future perhaps contribute to developing treatments against the negative effects of sleep-disorders and shift-work."

Specially evolved "clock cells" in the brain contain the circadian clock, which needs to be synchronised with the natural environmental cycles every day to prevent them running too fast or too slow.

Dr Stanewsky and colleagues have shown that fly brains were unable to synchronize to temperature cycles when separated from the rest of the body. This is in contrast with the ability to synchronize to light-dark cycles, which can take place with or without a connection to the fly body.

This study, reported today in the journal Neuron, identified a gene called nocte that, when altered, interferes with the fly's ability to synchronize its body clock using temperature signals. Importantly, disabling the nocte gene in nerve cells in the body also prevented the brain's ability to synchronize with temperature.

Dr Stanewsky's group wants to continue their studies on the fruit fly Drosophila and ultimately learn how the fly ensures perfect synchronisation of the circadian clock with the environment.

For more information, contact:

Simon Levey
Communications Officer
Queen Mary, University of London
Tel: +44 (0) 20 7882 5404 or +44 (0) 7740 346 737 (out of hours)
email: s.levey@qmul.ac.uk

Simon Levey | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>