Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circadian clock may impact organ transplant success

04.10.2011
Health care providers assess blood and tissue type as well as organ size and health to enhance transplant success. New research indicates that checklist might also need to include the circadian clock.

While some human studies have shown the time of day transplant surgery is performed can influence the outcome, this study of mice with dysfunctional internal clocks is the first correlating circadian clocks with transplant success, said Dr. Daniel Rudic, vascular biologist at Georgia Health Sciences University and corresponding author of the study published in Proceedings of the National Academy of Sciences.

The GHSU researchers found that arteries of mice with circadian clock dysfunction became thick and diseased within a few weeks of being transplanted to healthy mice. Arteries transplanted from healthy mice to the mutant mice remained healthy.

Blood vessel disease, and resulting blood loss to donated organs, is a key pitfall for transplant patients, potentially leading to organ failure and rejection.

"You take an organ out of a human, you don't think about it having a bad clock," Rudic said. "But the fact is the time at which you do the organ transplant may influence overall success and, if you have a donor who has a sleep disorder or is a night shift worker, it may affect it as well."

Since even healthy clocks produce variability in tissue function across the span of a day, transplantation might be best performed during optimal organ function, he said.

In addition to enabling sleep/wake cycles, circadian clocks are found throughout the body and involved in a lot more than sleep. "The clock is expressed not only in the brain but everywhere in the body and can function autonomously in different areas," Rudic said.

"Our research shows it's the clock within the blood vessel that is key to conferring the disease response in this case," said Dr. Bo Cheng, GHSU postdoctoral fellow and the study's first author.

While the researchers can determine whether clock gene expression is up, down or mutated, there is currently no way to do the tests in humans. Until screening tests are identified, donors could be screened for signs of dysfunction such as a sleep disorder or even aberrant behaviors that can impair healthy clocks, such as shift work, Rudic said. "Ideally this will open up some new research avenues," he said.

Interestingly, when blood vessels from the mutant mouse stay in that mouse, disease progression is much slower. "We believe that bad clock function worsens when it intersects with disease, so if you are eating a high-fat diet or if you undergoing a serious surgery like a transplant, and you have a bad clock, disease may occur and may occur quickly," Rudic said.

In 2009, he reported in the journal Circulation that mice with mutated or missing clock genes were prone to vascular disease similar to smokers and people with high blood pressure and cholesterol. That study showed the blood vessel clocks regulate key signaling that enables blood vessel dilation and remodeling.

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>