Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circadian clock may impact organ transplant success

04.10.2011
Health care providers assess blood and tissue type as well as organ size and health to enhance transplant success. New research indicates that checklist might also need to include the circadian clock.

While some human studies have shown the time of day transplant surgery is performed can influence the outcome, this study of mice with dysfunctional internal clocks is the first correlating circadian clocks with transplant success, said Dr. Daniel Rudic, vascular biologist at Georgia Health Sciences University and corresponding author of the study published in Proceedings of the National Academy of Sciences.

The GHSU researchers found that arteries of mice with circadian clock dysfunction became thick and diseased within a few weeks of being transplanted to healthy mice. Arteries transplanted from healthy mice to the mutant mice remained healthy.

Blood vessel disease, and resulting blood loss to donated organs, is a key pitfall for transplant patients, potentially leading to organ failure and rejection.

"You take an organ out of a human, you don't think about it having a bad clock," Rudic said. "But the fact is the time at which you do the organ transplant may influence overall success and, if you have a donor who has a sleep disorder or is a night shift worker, it may affect it as well."

Since even healthy clocks produce variability in tissue function across the span of a day, transplantation might be best performed during optimal organ function, he said.

In addition to enabling sleep/wake cycles, circadian clocks are found throughout the body and involved in a lot more than sleep. "The clock is expressed not only in the brain but everywhere in the body and can function autonomously in different areas," Rudic said.

"Our research shows it's the clock within the blood vessel that is key to conferring the disease response in this case," said Dr. Bo Cheng, GHSU postdoctoral fellow and the study's first author.

While the researchers can determine whether clock gene expression is up, down or mutated, there is currently no way to do the tests in humans. Until screening tests are identified, donors could be screened for signs of dysfunction such as a sleep disorder or even aberrant behaviors that can impair healthy clocks, such as shift work, Rudic said. "Ideally this will open up some new research avenues," he said.

Interestingly, when blood vessels from the mutant mouse stay in that mouse, disease progression is much slower. "We believe that bad clock function worsens when it intersects with disease, so if you are eating a high-fat diet or if you undergoing a serious surgery like a transplant, and you have a bad clock, disease may occur and may occur quickly," Rudic said.

In 2009, he reported in the journal Circulation that mice with mutated or missing clock genes were prone to vascular disease similar to smokers and people with high blood pressure and cholesterol. That study showed the blood vessel clocks regulate key signaling that enables blood vessel dilation and remodeling.

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>