Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cinnamon can replace harmful chemicals used to create nanoparticles

30.11.2010
MU scientists make strides in green nanotechnology

Gold nanoparticles, tiny pieces of gold so small that they can't be seen by the naked eye, are used in electronics, healthcare products and as pharmaceuticals to fight cancer.

Despite their positive uses, the process to make the nanoparticles requires dangerous and extremely toxic chemicals. While the nanotechnology industry is expected to produce large quantities of nanoparticles in the near future, researchers have been worried about the environmental impact of the global nanotechnological revolution.

Now, a study by a University of Missouri research team, led by MU scientist Kattesh Katti, curators' professor of radiology and physics in the School of Medicine and the College of Arts and Science, senior research scientist at the University of Missouri Research Reactor and director of the Cancer Nanotechnology Platform, has found a method that could replace nearly all of the toxic chemicals required to make gold nanoparticles. The missing ingredient can be found in nearly every kitchen's spice cabinet – cinnamon.

The usual method of creating gold nanoparticles utilizes harmful chemicals and acids that are not environmentally safe and contain toxic impurities. In the MU study, Katti and researchers Raghuraman Kannan, the Michael J and Sharon R. Bukstein Distinguished Faculty Scholar in Cancer Research, assistant professor of radiology and director of the Nanoparticle Production Core Facility; and Nripen Chanda, a research associate scientist, mixed gold salts with cinnamon and stirred the mixture in water to synthesize gold nanoparticles. The new process uses no electricity and utilizes no toxic agents.

"The procedure we have developed is non-toxic," Kannan said. "No chemicals are used in the generation of gold nanoparticles, except gold salts. It is a true 'green' process."

"From our work in green nanotechnology, it is clear that cinnamon — and other species such as herbs, leaves and seeds — will serve as a reservoir of phytochemicals and has the capability to convert metals into nanoparticles," Katti said. "Therefore, our approach to 'green' nanotechnology creates a renaissance symbolizing the indispensable role of Mother Nature in all future nanotechnological developments."

During the study, the researchers found that active chemicals in cinnamon are released when the nanoparticles are created. When these chemicals, known as phytochemicals, are combined with the gold nanoparticles, they can be used for cancer treatment. The phytochemicals can enter into cancer cells and assist in the destruction or imaging of cancer cells, Katti said.

"Our gold nanoparticles are not only ecologically and biologically benign, they also are biologically active against cancer cells," Katti said.

As the list of applications for nanotechnology grows in areas such as electronics, healthcare products and pharmaceuticals, the ecological implications of nanotechnology also grow. When considering the entire process from development to shipping to storage, creating gold nanoparticles with the current process can be incredibly harmful to the environment, Chanda said.

"On one hand, you are trying to create a new, useful technology. However, continuing to ignore the environmental effects is detrimental to the progress," Kannan said.

Katti, who is considered to be father of green nanotechnology, and Nobel prize winner Norman Borlaug have shared similar views on the potential of green nanotechnology in medicine, agricultural and life sciences. Borlaug predicted a connection between medical and agricultural sciences. Katti, who is the editor of The International Journal of Green Nanotechnology, said that as more uses for nanotechnology are created, scientists must develop ways to establish the connection between nanotechnology and green science. The study was published this fall in Pharmaceutical Research.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

Further reports about: Cancer Nanotechnology cancer cells gold nanoparticle toxic chemicals

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>