Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Churning out biosensors

17.12.2015

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP and the Fraunhofer Institute for Silicon Technology ISIT have successfully developed and tested flexible electrochemical biosensors on metallized film substrates. The Fraunhofer FEP has the technology to provide polymer films with a thin metal layer, which is based on a roll-to-roll process. A high degree of uniformity of the layer‘s thickness and a lack of defects represent particular technological challenges in this manufacturing process.

The growing market for wearable devices requires a high number of small, light-weight and high capacity sensors for different applications in sport, medicine or at work. Especially useful are so-called “wearables” such as functional wristbands which provide practical assistance while barely being felt. These devices can monitor body function and provide valuable information. In addition, the electronics should adhere flexibly to the arm.


Flexible biosensor, e. g. for glucose and lactate analysis in body fluids, such as blood, saliva and sweat

Fraunhofer ISIT


Polymer film which has been coated with metal in the roll-to-roll process at Fraunhofer FEP

Fraunhofer FEP

Fraunhofer researchers have now succeeded in taking a crucial step on the way to the production of such forward-looking products. Within the Fraunhofer ISIT the business fields “Medical Sensor Systems “ and “Wearables and Printed Electronics” cooperate in investigating how silicon-based sensor technologies can transfer to flexible modules and integrate into body-shape sensor systems.

The Fraunhofer FEP has considerably advanced this development by providing metallized film substrates, with the Fraunhofer ISIT developing a flexible electrochemical sensor with which good results could be attained. The sensor measures 8 x 10 mm² and contains an array of electrodes for biological immunological tests.

The special feature: the sensor’s thickness is only approximately one tenth of a millimeter as it was produced entirely on a polymer film which had previously been coated at the Fraunhofer FEP. The fundamental principle for the production of flexible sensors are thin layers in the submicrometer range. The researchers at the Fraunhofer FEP have a lot of experience in coating polymer films without defects and with a high degree of uniformity in highly productive roll-to-roll processes.

Christopher Beale, who developed the sensor as part of his Master’s thesis at the Fraunhofer ISIT, is pleased: “Our flexible electrochemical biochip shows similar results in a first test series when compared to our silicon chip.”

“Polymer films are especially well suited for such applications as they are light weight, flexible and biocompatible,” adds Dr. Matthias Fahland. “The results are encouraging even if some hurdles must be overcome still in order for such biosensors to be produced affordably in roll-to-roll processes. We at the Fraunhofer FEP with our processes and facilities are ideally positioned for further research in this promising field.”

Both institutes will work together more closely in the future in order to develop tailor made flexible electronics for the products of the future together with customers from industry. There are for example developments to integrate polymer films-based lactate sensors in wristbands. Thus it would be possible to monitor the wearer’s fatigue during exercise through correlated lactate concentration in sweat.

Weitere Informationen:

http://www.fep.fraunhofer.de/en/press_media/12_2015_2.html

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>