Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chronic exposure to methyl-mercury increases of neurodegenerative disease

Research shows chronic exposure to low-dose methyl-mercury, an environmental contaminant commonly found in seafood, may increase the risk of developing neurodegenerative disease.

The research team led by Prof. Samuel Lo, Associate Head of the Department of Applied Biology and Chemical Technology, recently discovered that chronic exposure to low-dose methyl-mercury, an environmental contaminant commonly found in seafood, may increase the risk of developing neurodegenerative disease.

In their study of rats chronically exposed to low doses of methyl-mercury, the researchers concluded that the cerebellum accumulates the largest amount of mercury, followed by the visual cortex, motor cortex and somatosensory cortex. Another important finding of this study was that in addition to methyl-mercury, the brain also accumulates other forms of mercury. In cases of acute mercury poisoning, such as that seen in Minamata disease, the neuro-sensory pathway seems to be affected first. The researchers employed advanced proteomic techniques to investigate protein expression in the somatosensory cortices of rats intoxicated with low-dose methyl-mercury. They found the expression of 104 out of 973 proteins to decrease by at least 50% after exposure to mercury contaminants.

Among these down-regulated proteins, 18% were found to be related to the cytoskeleton, 26% to energy metabolism, 18% to protein metabolism, and 20% to neurotransmitter release and signal transduction. The combined effects of these down-regulated proteins appear to suppress normal neuronal functions to an enormous degree, including the ability to repair the cerebrum itself. These results led the researchers to the conclusion that chronic exposure to low-dose methyl-mercury may increase the risk of developing neurodegenerative disease.

This article was first appeared on the PolyU Milestone, June 2011 Edition

Wilfred Lai | Research asia research news
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>