Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic exposure to methyl-mercury increases of neurodegenerative disease

04.08.2011
Research shows chronic exposure to low-dose methyl-mercury, an environmental contaminant commonly found in seafood, may increase the risk of developing neurodegenerative disease.

The research team led by Prof. Samuel Lo, Associate Head of the Department of Applied Biology and Chemical Technology, recently discovered that chronic exposure to low-dose methyl-mercury, an environmental contaminant commonly found in seafood, may increase the risk of developing neurodegenerative disease.

In their study of rats chronically exposed to low doses of methyl-mercury, the researchers concluded that the cerebellum accumulates the largest amount of mercury, followed by the visual cortex, motor cortex and somatosensory cortex. Another important finding of this study was that in addition to methyl-mercury, the brain also accumulates other forms of mercury. In cases of acute mercury poisoning, such as that seen in Minamata disease, the neuro-sensory pathway seems to be affected first. The researchers employed advanced proteomic techniques to investigate protein expression in the somatosensory cortices of rats intoxicated with low-dose methyl-mercury. They found the expression of 104 out of 973 proteins to decrease by at least 50% after exposure to mercury contaminants.

Among these down-regulated proteins, 18% were found to be related to the cytoskeleton, 26% to energy metabolism, 18% to protein metabolism, and 20% to neurotransmitter release and signal transduction. The combined effects of these down-regulated proteins appear to suppress normal neuronal functions to an enormous degree, including the ability to repair the cerebrum itself. These results led the researchers to the conclusion that chronic exposure to low-dose methyl-mercury may increase the risk of developing neurodegenerative disease.

This article was first appeared on the PolyU Milestone, June 2011 Edition

Wilfred Lai | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>