Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosome breakpoints contribute to genetic variation

24.04.2009
A new study reveals that – contrary to decades of evolutionary thought – chromosome regions that are prone to breakage when new species are formed are a rich source of genetic variation.

The functions of genes found in these "breakpoint regions" differ significantly from those occurring elsewhere in the chromosomes. This suggests that chromosomal organization plays an important evolutionary role, the researchers report.

The study, published in the journal Genome Research, is the first to show that different parts of chromosomes can have very different evolutionary histories, said University of Illinois animal sciences professor Harris Lewin, who led the research. Lewin directs the Institute for Genomic Biology and is part of an international team that sequenced the cow genome.

"Our results demonstrate that chromosome breakage in evolution is non-random and that the breakpoint regions and the more stable regions of chromosomes are evolving in distinctly different ways," he said.

When egg or sperm cells form in animals, maternal and paternal chromosomes first pair up and then recombine. The chromosomes literally break and reattach to one another. In most cases, the new chromosomes have the same arrangement of genes as the parent cells, but with new combinations of maternal and paternal genes.

The "crossing over" of segments of maternal and paternal chromosomes to form hybrid chromosomes has long been acknowledged as a driver of genetic variation.

Sometimes, however, the wrong chromosomes recombine, segments of chromosomes become inverted or complete breakages and fissions occur. These rearrangements may lead to genetic diseases or may contribute to the development of new species.

Until now, scientists have been unable to determine how the organization of genes along chromosomes and variation within the breakpoint regions contribute to the evolution of an organism's genome, Lewin said. Breakages sometimes disrupt genes or gene families that are regulated together, for example. Deletions, insertions and inversions can cause subtle or dramatic changes in how the genes function.

Scientists once hypothesized that chromosomal breakage and recombination occurred randomly along the chromosomes during evolution. But in 2003, a team from the University of California at San Diego and the Lewin laboratory reported that the breakpoints occurred more often in specific chromosomal regions than in others.

In 2004, Lewin and his colleagues reported a surprising finding: Breakpoint regions also contain a higher density of genes than other parts of the chromosome. In 2005, Lewin's team showed that breakpoint regions also have higher numbers of segmental duplications, a type of mutation that increases the copy number of genes and the sequences that flank them.

"To me, this was completely counterintuitive. I thought we would have these breakpoints in gene deserts," Lewin said. "We had to rethink the whole evolutionary hypothesis about what was going on in breakpoints."

In the new study, Denis Larkin, a senior scientist on Lewin's team, compared the chromosomes of nine mammals (human, chimp, macaque, rat, mouse, pig, cattle, dog, opossum) and a chicken. He found that the breakpoint regions contained many more copy number variants, insertions and deletions in their sequences than the other parts of the chromosomes. Such variations appear to make these regions more susceptible to breakage, Lewin said. (The chromosome analysis was facilitated by Evolution Highway, a powerful software tool developed in collaboration with Michael Welge and Loretta Auvil at the National Center for Supercomputing Applications at the University of Illinois.)

The researchers also found that different classes of genes appear in the breakpoint and break-resistant regions of chromosomes. Those in the breakpoint regions code for proteins involved in immunity and muscle contraction, for example. Rearrangements may cause copies of such genes to increase or change the way they are regulated. These new sources of variation may then be subject to natural selection, the mechanism of evolution proposed by Charles Darwin.

The genes in more stable parts of the chromosomes are involved in growth and development, particularly embryonic development. Disruptions to these genes would probably be harmful to the organism as a whole, Lewin said.

"If the chromosome rearrangement is really bad for the organism, it will be eliminated. It won't survive," he said. "So if something persists in the genome, it generally has to either be neutral, or it has to be of some benefit."

Evolutionary biologists have historically focused on small changes in the genome – such as point mutations or the insertion of viral genes – that sometimes lead to the development of new forms, Lewin said.

"But by overlooking the importance of chromosome rearrangements, these earthquakes in the genome, they may have missed a key component of the mechanism for generating the variation used by natural selection," he said.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>