Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosome breakpoints contribute to genetic variation

24.04.2009
A new study reveals that – contrary to decades of evolutionary thought – chromosome regions that are prone to breakage when new species are formed are a rich source of genetic variation.

The functions of genes found in these "breakpoint regions" differ significantly from those occurring elsewhere in the chromosomes. This suggests that chromosomal organization plays an important evolutionary role, the researchers report.

The study, published in the journal Genome Research, is the first to show that different parts of chromosomes can have very different evolutionary histories, said University of Illinois animal sciences professor Harris Lewin, who led the research. Lewin directs the Institute for Genomic Biology and is part of an international team that sequenced the cow genome.

"Our results demonstrate that chromosome breakage in evolution is non-random and that the breakpoint regions and the more stable regions of chromosomes are evolving in distinctly different ways," he said.

When egg or sperm cells form in animals, maternal and paternal chromosomes first pair up and then recombine. The chromosomes literally break and reattach to one another. In most cases, the new chromosomes have the same arrangement of genes as the parent cells, but with new combinations of maternal and paternal genes.

The "crossing over" of segments of maternal and paternal chromosomes to form hybrid chromosomes has long been acknowledged as a driver of genetic variation.

Sometimes, however, the wrong chromosomes recombine, segments of chromosomes become inverted or complete breakages and fissions occur. These rearrangements may lead to genetic diseases or may contribute to the development of new species.

Until now, scientists have been unable to determine how the organization of genes along chromosomes and variation within the breakpoint regions contribute to the evolution of an organism's genome, Lewin said. Breakages sometimes disrupt genes or gene families that are regulated together, for example. Deletions, insertions and inversions can cause subtle or dramatic changes in how the genes function.

Scientists once hypothesized that chromosomal breakage and recombination occurred randomly along the chromosomes during evolution. But in 2003, a team from the University of California at San Diego and the Lewin laboratory reported that the breakpoints occurred more often in specific chromosomal regions than in others.

In 2004, Lewin and his colleagues reported a surprising finding: Breakpoint regions also contain a higher density of genes than other parts of the chromosome. In 2005, Lewin's team showed that breakpoint regions also have higher numbers of segmental duplications, a type of mutation that increases the copy number of genes and the sequences that flank them.

"To me, this was completely counterintuitive. I thought we would have these breakpoints in gene deserts," Lewin said. "We had to rethink the whole evolutionary hypothesis about what was going on in breakpoints."

In the new study, Denis Larkin, a senior scientist on Lewin's team, compared the chromosomes of nine mammals (human, chimp, macaque, rat, mouse, pig, cattle, dog, opossum) and a chicken. He found that the breakpoint regions contained many more copy number variants, insertions and deletions in their sequences than the other parts of the chromosomes. Such variations appear to make these regions more susceptible to breakage, Lewin said. (The chromosome analysis was facilitated by Evolution Highway, a powerful software tool developed in collaboration with Michael Welge and Loretta Auvil at the National Center for Supercomputing Applications at the University of Illinois.)

The researchers also found that different classes of genes appear in the breakpoint and break-resistant regions of chromosomes. Those in the breakpoint regions code for proteins involved in immunity and muscle contraction, for example. Rearrangements may cause copies of such genes to increase or change the way they are regulated. These new sources of variation may then be subject to natural selection, the mechanism of evolution proposed by Charles Darwin.

The genes in more stable parts of the chromosomes are involved in growth and development, particularly embryonic development. Disruptions to these genes would probably be harmful to the organism as a whole, Lewin said.

"If the chromosome rearrangement is really bad for the organism, it will be eliminated. It won't survive," he said. "So if something persists in the genome, it generally has to either be neutral, or it has to be of some benefit."

Evolutionary biologists have historically focused on small changes in the genome – such as point mutations or the insertion of viral genes – that sometimes lead to the development of new forms, Lewin said.

"But by overlooking the importance of chromosome rearrangements, these earthquakes in the genome, they may have missed a key component of the mechanism for generating the variation used by natural selection," he said.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>