Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Choreography of submerged whale lunges revealed

Returning briefly to the surface for great lungfuls of air, the underwater lifestyles of whales had been a complete mystery until a small group of pioneers from various global institutions – including Malene Simon, Mark Johnson and Peter Madsen – began attaching data-logging tags to these enigmatic creatures.
Knowing that Jeremy Goldbogen and colleagues had successful tagged blue, fin and humpback whales to reveal how they lunge through giant shoals of krill, Simon and her colleagues headed off to Greenland where they tagged five humpback whales to discover how the animals capture and consume their prey:

krill and agile capelin.

Attaching individual tags behind the dorsal fin on three of the whales – to record their stroke patterns – and nearer the head in the remaining whales – to better measure head movements – the team successfully recorded high resolution depth, acceleration and magnetic orientation data from 479 dives to find out more about the animals' lunge tactics. Simon, from the Greenland Institute of Natural Resources, Madsen, from Aarhus University, Denmark and Johnsen from the University of St. Andrews, UK, report how whales choreograph their foraging lunges at depth in The Journal of Experimental Biology at

Analysing the whales' acceleration patterns, Simon saw that as the whales initiated a lunge, they accelerated upward, beating the tail fins (flukes) twice as fast as normal to reach speeds of 3m/s, which is not much greater than the whales' top cruise speeds. However, while the animals were still beating their flukes, the team saw their speed drop dramatically, although the whales never came to a complete standstill, continuing to glide at 1.5m/s even after they stopped beating their flukes. So, when did the whales throw their mouths open during this sequence?

Given that the top speed attained by the whales during the early stages of the lunge were similar to the animals' cruising speeds and the fact that the whales were beating their flukes much harder than usual to maintain the speed, the team conclude, 'The implication is that the mouth must already be open and the buccal [mouth] pouch inflated enough to create a higher drag when the high stroking rates… occur within lunges'. In addition, the team suggests that the whales continue accelerating after opening their mouths in order to use their peak speed to stretch the elastic ventral groove blubber that inflates as they engulf water. Once the buccal pouch is fully inflated, the whales continue beating their flukes after closing their mouths to accelerate the colossal quantity of water, before ceasing fluke movement and slowing to a new speed of 1.5m/s. Finally, the animals filter the water and swallow the entrapped fish over a 46s period before resuming beating their flukes as they launch the next lunge.

Considering that humpback whales and other rorquals were thought to grind to a halt after throwing their jaws wide and that reaccelerating their massive bodies from a stationary start was believed to make lunge feeding extortionately expensive, the team's discovery that the animals continue gliding after closing their mouths suggests that lunge feeding may be cheaper than previously thought. However, the team concedes that despite the potential reduction in energy expenditure, lunge feeding is still highly demanding – the whale must accelerate the 30 tons of water held in its mouth – although they suggest that the high-speed tactic is essential for the massive hunters to engulf their nimble prey.



REFERENCE: Simon, M., Johnson., M. and Madsen, P. T. (2012) Keeping momentum with a mouthful of water: behavior and kinematics of humpback whale lunge feeding. J. Exp. Biol. 215, 3786-3798.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT

Kathryn Knight | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>