Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choreography of submerged whale lunges revealed

11.10.2012
Returning briefly to the surface for great lungfuls of air, the underwater lifestyles of whales had been a complete mystery until a small group of pioneers from various global institutions – including Malene Simon, Mark Johnson and Peter Madsen – began attaching data-logging tags to these enigmatic creatures.
Knowing that Jeremy Goldbogen and colleagues had successful tagged blue, fin and humpback whales to reveal how they lunge through giant shoals of krill, Simon and her colleagues headed off to Greenland where they tagged five humpback whales to discover how the animals capture and consume their prey:

krill and agile capelin.

Attaching individual tags behind the dorsal fin on three of the whales – to record their stroke patterns – and nearer the head in the remaining whales – to better measure head movements – the team successfully recorded high resolution depth, acceleration and magnetic orientation data from 479 dives to find out more about the animals' lunge tactics. Simon, from the Greenland Institute of Natural Resources, Madsen, from Aarhus University, Denmark and Johnsen from the University of St. Andrews, UK, report how whales choreograph their foraging lunges at depth in The Journal of Experimental Biology at http://jeb.biologists.org.

Analysing the whales' acceleration patterns, Simon saw that as the whales initiated a lunge, they accelerated upward, beating the tail fins (flukes) twice as fast as normal to reach speeds of 3m/s, which is not much greater than the whales' top cruise speeds. However, while the animals were still beating their flukes, the team saw their speed drop dramatically, although the whales never came to a complete standstill, continuing to glide at 1.5m/s even after they stopped beating their flukes. So, when did the whales throw their mouths open during this sequence?

Given that the top speed attained by the whales during the early stages of the lunge were similar to the animals' cruising speeds and the fact that the whales were beating their flukes much harder than usual to maintain the speed, the team conclude, 'The implication is that the mouth must already be open and the buccal [mouth] pouch inflated enough to create a higher drag when the high stroking rates… occur within lunges'. In addition, the team suggests that the whales continue accelerating after opening their mouths in order to use their peak speed to stretch the elastic ventral groove blubber that inflates as they engulf water. Once the buccal pouch is fully inflated, the whales continue beating their flukes after closing their mouths to accelerate the colossal quantity of water, before ceasing fluke movement and slowing to a new speed of 1.5m/s. Finally, the animals filter the water and swallow the entrapped fish over a 46s period before resuming beating their flukes as they launch the next lunge.

Considering that humpback whales and other rorquals were thought to grind to a halt after throwing their jaws wide and that reaccelerating their massive bodies from a stationary start was believed to make lunge feeding extortionately expensive, the team's discovery that the animals continue gliding after closing their mouths suggests that lunge feeding may be cheaper than previously thought. However, the team concedes that despite the potential reduction in energy expenditure, lunge feeding is still highly demanding – the whale must accelerate the 30 tons of water held in its mouth – although they suggest that the high-speed tactic is essential for the massive hunters to engulf their nimble prey.

###

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org/content/215/21/3786.abstract

REFERENCE: Simon, M., Johnson., M. and Madsen, P. T. (2012) Keeping momentum with a mouthful of water: behavior and kinematics of humpback whale lunge feeding. J. Exp. Biol. 215, 3786-3798.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>