Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CHOP-led study detects dozens of genes for adult height

04.01.2011
Technique leverages gene-dense data chip for new discoveries

As much as 90 percent of variation in adult height may be caused by genetic inheritance, but a multitude of genes are involved. Most of these have yet to be discovered.

Now a new meta-analysis of data from more than 100,000 people has identified variants in over two dozen genes that were not previously associated with height. The study also confirmed genetic associations in more than 30 previously known height genes. "Although the discoveries may not have immediate clinical use, the approach we used will undoubtedly be helpful in discovering genes that influence other traits and diseases," said the co-study leader, Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia.

Using an existing gene chip customized to include approximately 50,000 SNPs (single-base changes in one letter of DNA's genetic code) in genes having a high likelihood of association with cardiovascular disease, the study team searched variants for SNPs linked to adult height. This study, said Hakonarson, which used height as a lead phenotype for a gene-rich SNP chip enhanced in rare variant coverage, suggests that such platforms will succeed in identifying genetic variants that contribute to multiple other cardiovascular diseases, and potentially to other complex traits.

"This is a proof-of-concept that more dense genotyping of selected gene-rich datasets allows us to find additional genes that have gone undetected in studies using conventional SNP arrays," said Hakonarson. Hakonarson and co-study leader Brendan J. Keating, D.Phil., also from the Center for Applied Genomics, led the large, international collaborative group whose study appeared online Dec. 30 in the American Journal of Human Genetics.

Many of the variants are in locations with interesting functional roles—in energy metabolism, growth hormones, circadian rhythm and cellular growth—of possible relevance to the biology of growth. The study team identified 64 height-associated genes, 27 of which had not been previously associated with height.

The meta-analysis included DNA from over 114,000 adults from six ethnic groups. The researchers used the IBC array, also called the CardioChip, previously designed by Keating to study genes identified or postulated to play a role in cardiovascular disease. The chip includes some 50,000 SNPs from 2,000 gene regions—about 10 percent of known human genes.

The researchers chose height as an easy-to-measure trait that is highly heritable, usually stable over adult life, and routinely recorded in large population-based studies. The CHOP scientists analyzed gene data from over 65,000 individuals, and Keating collaborated with researchers at dozens of centers throughout the world who genotyped samples from another 48,000 additional study subjects. In all, 47 studies contributed to this meta-analysis.

The specialized gene array provided very dense coverage in known and putative cardiovascular disease regions. The array's design allowed the researchers to capture richer genetic diversity from many resequencing studies and to detect SNPs with low frequency in many diverse human populations. Two of the novel uncommon SNP findings were in genes with compelling evidence of a biological role in determining height. The IL-11 gene is essential to normal bone development and the SMAD3 gene is made active by a growth factor involved with height. Many of the low-frequency SNPs, said the researchers, have strong effects, and may point the way to functional genes.

The researchers used a gene-centric approach, employing an array enriched with specific genes and avoiding non-coding sections of the genome. "The chip we used has high-density genetic coverage in a range of highly prioritized genes, and similar high-density chips may be useful in studying other complex genetic traits," said Hakonarson.

He added that "This discovery method is currently much less expensive than full-genome sequencing, which, as the technology advances, is becoming increasingly prevalent in identifying lower-frequency, disease-related genes. The near future may offer a window of opportunity for this type of technique, using large samples and dense genetic coverage, until whole-genome sequencing becomes more affordable."

Keating said that these results suggest that if the sample sizes are large enough, genotyping arrays with SNP content of less than 5 percent frequency in the population have the ability to capture new disease- and trait-associated variants that common SNP arrays have missed. These low-frequency variants also confer greater effect sizes in this study and may be a lot closer to disease causality.

"Meta-Analysis of Dense Genecentric Association Studies Reveals Common and Uncommon Variants Associated with Height," American Journal of Human Genetics, published online Dec. 30, 2010, to publish in January 2011 print edition. doi: 10.1016/j.ajhg.2010.11.007

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 460-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>