Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CHOP-led study detects dozens of genes for adult height

04.01.2011
Technique leverages gene-dense data chip for new discoveries

As much as 90 percent of variation in adult height may be caused by genetic inheritance, but a multitude of genes are involved. Most of these have yet to be discovered.

Now a new meta-analysis of data from more than 100,000 people has identified variants in over two dozen genes that were not previously associated with height. The study also confirmed genetic associations in more than 30 previously known height genes. "Although the discoveries may not have immediate clinical use, the approach we used will undoubtedly be helpful in discovering genes that influence other traits and diseases," said the co-study leader, Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children's Hospital of Philadelphia.

Using an existing gene chip customized to include approximately 50,000 SNPs (single-base changes in one letter of DNA's genetic code) in genes having a high likelihood of association with cardiovascular disease, the study team searched variants for SNPs linked to adult height. This study, said Hakonarson, which used height as a lead phenotype for a gene-rich SNP chip enhanced in rare variant coverage, suggests that such platforms will succeed in identifying genetic variants that contribute to multiple other cardiovascular diseases, and potentially to other complex traits.

"This is a proof-of-concept that more dense genotyping of selected gene-rich datasets allows us to find additional genes that have gone undetected in studies using conventional SNP arrays," said Hakonarson. Hakonarson and co-study leader Brendan J. Keating, D.Phil., also from the Center for Applied Genomics, led the large, international collaborative group whose study appeared online Dec. 30 in the American Journal of Human Genetics.

Many of the variants are in locations with interesting functional roles—in energy metabolism, growth hormones, circadian rhythm and cellular growth—of possible relevance to the biology of growth. The study team identified 64 height-associated genes, 27 of which had not been previously associated with height.

The meta-analysis included DNA from over 114,000 adults from six ethnic groups. The researchers used the IBC array, also called the CardioChip, previously designed by Keating to study genes identified or postulated to play a role in cardiovascular disease. The chip includes some 50,000 SNPs from 2,000 gene regions—about 10 percent of known human genes.

The researchers chose height as an easy-to-measure trait that is highly heritable, usually stable over adult life, and routinely recorded in large population-based studies. The CHOP scientists analyzed gene data from over 65,000 individuals, and Keating collaborated with researchers at dozens of centers throughout the world who genotyped samples from another 48,000 additional study subjects. In all, 47 studies contributed to this meta-analysis.

The specialized gene array provided very dense coverage in known and putative cardiovascular disease regions. The array's design allowed the researchers to capture richer genetic diversity from many resequencing studies and to detect SNPs with low frequency in many diverse human populations. Two of the novel uncommon SNP findings were in genes with compelling evidence of a biological role in determining height. The IL-11 gene is essential to normal bone development and the SMAD3 gene is made active by a growth factor involved with height. Many of the low-frequency SNPs, said the researchers, have strong effects, and may point the way to functional genes.

The researchers used a gene-centric approach, employing an array enriched with specific genes and avoiding non-coding sections of the genome. "The chip we used has high-density genetic coverage in a range of highly prioritized genes, and similar high-density chips may be useful in studying other complex genetic traits," said Hakonarson.

He added that "This discovery method is currently much less expensive than full-genome sequencing, which, as the technology advances, is becoming increasingly prevalent in identifying lower-frequency, disease-related genes. The near future may offer a window of opportunity for this type of technique, using large samples and dense genetic coverage, until whole-genome sequencing becomes more affordable."

Keating said that these results suggest that if the sample sizes are large enough, genotyping arrays with SNP content of less than 5 percent frequency in the population have the ability to capture new disease- and trait-associated variants that common SNP arrays have missed. These low-frequency variants also confer greater effect sizes in this study and may be a lot closer to disease causality.

"Meta-Analysis of Dense Genecentric Association Studies Reveals Common and Uncommon Variants Associated with Height," American Journal of Human Genetics, published online Dec. 30, 2010, to publish in January 2011 print edition. doi: 10.1016/j.ajhg.2010.11.007

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 460-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>