Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choosing your neighbors: MBL scientists see how microbes relate in space

15.02.2011
Like people in cities, microbes often live in complex communities that contain many different microbial types. Also like us, microbes tend to gravitate to and "hang out" with certain other types in their community, more than with the rest. And sometimes, when opportunities arise, they move to more favorable locations.

But until recently, scientists have not been able to look at a microbial community and distinguish the spatial relationship of more than 2 or 3 kinds of microbes at once.

Now, a microscopy technique developed at the Marine Biological Laboratory (MBL), allows scientists to see the spatial arrangement of up to 28 differently labeled microbes in a single field of view.

"We get information on the presence of many different microbes at once and get it quickly, cheaply, and perhaps more accurately than other methods," says Gary Borisy, president and director of the MBL and co-author of a paper describing the technique published today in Proceedings of the National Academy of Sciences.

"Just as you may move to a certain neighborhood because the schools are good for your kids, the neighborhood is important for microbes," Borisy says. "When we find out where (in a community) they like to hang out, that has implications for how they function."

The new technique, called CLASI-FISH (combinatorial labeling and spectral imaging fluorescent in situ hybridization), is faster than traditional ways of identifying the microbes in a sample (by laboratory culture or by DNA sequencing). Plus, it reveals the spatial structure of the community, which these methods do not.

"We don't just find out who is there. We find out where they are in space," Borisy says.

Borisy and his colleagues, including Floyd Dewhirst of the Harvard School of Dental Medicine, used the technique to analyze dental plaque, a complex biofilm that is known to contain at least 600 species of microbes. They were able to visually discriminate 15 different microbial types, and to determine which 2 types (Prevotella and Actinomyces) showed the most interspecies associations.

"That might imply some functional interaction between them," Borisy says. "One may be facilitating the other to colonize the site, and the exchange will reap some benefit for them both."

The lead author on the paper is Alex M. Valm, a student in the Brown-MBL Graduate Program in Biological and Environmental Sciences. Another team member, MBL scientist Jessica Mark Welch, is leading the effort to apply CLASI-FISH to the organization of microbial communities in another setting—the guts of mice harboring defined populations of human microbes.

"It's very possible that this technology will enable a new kind of clinical diagnostic procedure, so that it will be possible to very quickly and accurately diagnose a specimen for many kinds of microbes at once," Borisy says. "As an alternative to culturing, it could be faster, cheaper, and better."

Resources:

Citation:

Valm, A.M., Mark Welch, J.L., Rieken, C.W., Hasegawa, Y., Sogin, M.L., Oldenbourg, R., Dewhirst, F.E., and Borisy, G.G. (2011) Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. PNAS Early Edition (Feb. 14), doi/10.1073/pnas.1101134108.

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in 1888 in Woods Hole, Massachusetts, the MBL is an independent, nonprofit corporation.

Diana Kenney | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>