Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choosing your neighbors: MBL scientists see how microbes relate in space

15.02.2011
Like people in cities, microbes often live in complex communities that contain many different microbial types. Also like us, microbes tend to gravitate to and "hang out" with certain other types in their community, more than with the rest. And sometimes, when opportunities arise, they move to more favorable locations.

But until recently, scientists have not been able to look at a microbial community and distinguish the spatial relationship of more than 2 or 3 kinds of microbes at once.

Now, a microscopy technique developed at the Marine Biological Laboratory (MBL), allows scientists to see the spatial arrangement of up to 28 differently labeled microbes in a single field of view.

"We get information on the presence of many different microbes at once and get it quickly, cheaply, and perhaps more accurately than other methods," says Gary Borisy, president and director of the MBL and co-author of a paper describing the technique published today in Proceedings of the National Academy of Sciences.

"Just as you may move to a certain neighborhood because the schools are good for your kids, the neighborhood is important for microbes," Borisy says. "When we find out where (in a community) they like to hang out, that has implications for how they function."

The new technique, called CLASI-FISH (combinatorial labeling and spectral imaging fluorescent in situ hybridization), is faster than traditional ways of identifying the microbes in a sample (by laboratory culture or by DNA sequencing). Plus, it reveals the spatial structure of the community, which these methods do not.

"We don't just find out who is there. We find out where they are in space," Borisy says.

Borisy and his colleagues, including Floyd Dewhirst of the Harvard School of Dental Medicine, used the technique to analyze dental plaque, a complex biofilm that is known to contain at least 600 species of microbes. They were able to visually discriminate 15 different microbial types, and to determine which 2 types (Prevotella and Actinomyces) showed the most interspecies associations.

"That might imply some functional interaction between them," Borisy says. "One may be facilitating the other to colonize the site, and the exchange will reap some benefit for them both."

The lead author on the paper is Alex M. Valm, a student in the Brown-MBL Graduate Program in Biological and Environmental Sciences. Another team member, MBL scientist Jessica Mark Welch, is leading the effort to apply CLASI-FISH to the organization of microbial communities in another setting—the guts of mice harboring defined populations of human microbes.

"It's very possible that this technology will enable a new kind of clinical diagnostic procedure, so that it will be possible to very quickly and accurately diagnose a specimen for many kinds of microbes at once," Borisy says. "As an alternative to culturing, it could be faster, cheaper, and better."

Resources:

Citation:

Valm, A.M., Mark Welch, J.L., Rieken, C.W., Hasegawa, Y., Sogin, M.L., Oldenbourg, R., Dewhirst, F.E., and Borisy, G.G. (2011) Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. PNAS Early Edition (Feb. 14), doi/10.1073/pnas.1101134108.

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in 1888 in Woods Hole, Massachusetts, the MBL is an independent, nonprofit corporation.

Diana Kenney | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>