Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choosing cheese

18.07.2014

Researchers study cheese to unlock secrets of how microbial communities form

Go ahead and call Rachel Dutton's research cheesy if you must. As far as she's concerned, it's anything but an insult.

A Bauer Fellow at the Faculty of Arts and Sciences' Center for Systems Biology, Dutton and her lab study cheese – or more precisely – the bacteria and fungi that live on cheese, in an effort to better understand how microbial communities form.

After studying 137 varieties of cheese collected in 10 different countries, Dutton has been able to identify three general types of microbial communities that live on cheese, opening the door to using each as a "model" community for the study of whether and how various microbes and fungi compete or cooperate as they form communities, what molecules may be involved in the process and what mechanisms may be involved. The study is described in a July 17 paper in Cell.

"We often use model organisms like E. coli or C. elegans because they can give us an understanding of the basic mechanisms and principles of how biology works," Dutton said. "The goal of this work was to identify something like a model organism, but for microbial communities – something we can bring into the lab and easily replicate and manipulate.

"The challenge in studying these communities is that many of the environments where they are found, such as the human body or the soil, are hard to replicate because they're so complicated," she continued. "Cheese seemed to offer a system…in which we knew exactly what these communities were growing on, so we thought we should be able to replicate that environment in the lab."

To understand what a model community might look like, Dutton and her lab first set out to identify dozens of naturally-occurring communities by collecting samples from the rinds of dozens of varieties of cheese around the world.

"We did some travelling in Europe and worked directly with a number of cheese-makers by having them send us samples or vising to collect samples, and in some cases we were able to collect samples from places like Formaggio Kitchen and other cheese shops," she said.

By sequencing those samples, Dutton was able to identify the type of bacteria and fungi in each, and found that while there was wide variation among different samples, the samples could be separated into one of three main types of communities.

"What we ended up finding is there are microbes which occur in all the areas where cheese is made," she said. "What was interesting is if you make the same type of cheese in France or in Vermont, they will have very similar communities. What seems to be driving the type of community you find is the environment that the cheese-maker creates on the surface of the cheese, so you can make two cheeses that are very similar in two different places, or you can make two very different cheeses in the same place."

Working in the lab, Dutton and colleagues were able to isolate each species of microbe and fungi found in the samples and conduct tests aimed at reproducing the communities found on different cheeses. "In many environments, it is challenging to isolate all of the microbes, so we were surprised to find that we could culture all of the species present on cheese rinds. This gives us a great foundation for being able to study communities in the lab," says Julie Button, a postdoctoral researcher in the Dutton lab.

"If we know a particular cheese has certain species, we can mix them together and try to recreate that community in the lab," Dutton said. "For example, we might try to simply put those species together at the same time in equal amounts to see if the community that forms is similar to that found in the sample."

The study was also aimed at understanding how various species of bacteria and fungi interact, and identified several instances in which certain bacteria halted fungal growth, and vice versa.

"We are now working with chemists to characterize what the molecules are that different bacteria might use to kill a fungus," Dutton said. "It's also possible that there may be anti-microbials that may arise from this that are normally at play during the formation of a community."

While wider applications for understanding how bacterial communities form may eventually emerge, Dutton said there are still a number of fundamental questions to answer in the short term.

"There are so many wide open questions in thinking about how microbial communities work, that future research could go in a number of different directions," she said. "Our goal is to understand some of these fundamental questions, such as: Are there certain principles that are operating as a community forms, and can we control those factors in the lab?

"Cheese is fascinating to me in its own right – it's somewhat surprising that, for a food that we've been eating for thousands of years, we don't have a complete understanding of the microorganisms that are present in this food."

But now that Dutton has that understanding, does she still eat cheese?

"I do," she said with a laugh. "But I'm very picky, because I like very good cheese now."

Peter Reuell | Eurek Alert!

Further reports about: bacteria cheese environments fungi microbes microbial microbial communities replicate

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>