Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choosing cheese

18.07.2014

Researchers study cheese to unlock secrets of how microbial communities form

Go ahead and call Rachel Dutton's research cheesy if you must. As far as she's concerned, it's anything but an insult.

A Bauer Fellow at the Faculty of Arts and Sciences' Center for Systems Biology, Dutton and her lab study cheese – or more precisely – the bacteria and fungi that live on cheese, in an effort to better understand how microbial communities form.

After studying 137 varieties of cheese collected in 10 different countries, Dutton has been able to identify three general types of microbial communities that live on cheese, opening the door to using each as a "model" community for the study of whether and how various microbes and fungi compete or cooperate as they form communities, what molecules may be involved in the process and what mechanisms may be involved. The study is described in a July 17 paper in Cell.

"We often use model organisms like E. coli or C. elegans because they can give us an understanding of the basic mechanisms and principles of how biology works," Dutton said. "The goal of this work was to identify something like a model organism, but for microbial communities – something we can bring into the lab and easily replicate and manipulate.

"The challenge in studying these communities is that many of the environments where they are found, such as the human body or the soil, are hard to replicate because they're so complicated," she continued. "Cheese seemed to offer a system…in which we knew exactly what these communities were growing on, so we thought we should be able to replicate that environment in the lab."

To understand what a model community might look like, Dutton and her lab first set out to identify dozens of naturally-occurring communities by collecting samples from the rinds of dozens of varieties of cheese around the world.

"We did some travelling in Europe and worked directly with a number of cheese-makers by having them send us samples or vising to collect samples, and in some cases we were able to collect samples from places like Formaggio Kitchen and other cheese shops," she said.

By sequencing those samples, Dutton was able to identify the type of bacteria and fungi in each, and found that while there was wide variation among different samples, the samples could be separated into one of three main types of communities.

"What we ended up finding is there are microbes which occur in all the areas where cheese is made," she said. "What was interesting is if you make the same type of cheese in France or in Vermont, they will have very similar communities. What seems to be driving the type of community you find is the environment that the cheese-maker creates on the surface of the cheese, so you can make two cheeses that are very similar in two different places, or you can make two very different cheeses in the same place."

Working in the lab, Dutton and colleagues were able to isolate each species of microbe and fungi found in the samples and conduct tests aimed at reproducing the communities found on different cheeses. "In many environments, it is challenging to isolate all of the microbes, so we were surprised to find that we could culture all of the species present on cheese rinds. This gives us a great foundation for being able to study communities in the lab," says Julie Button, a postdoctoral researcher in the Dutton lab.

"If we know a particular cheese has certain species, we can mix them together and try to recreate that community in the lab," Dutton said. "For example, we might try to simply put those species together at the same time in equal amounts to see if the community that forms is similar to that found in the sample."

The study was also aimed at understanding how various species of bacteria and fungi interact, and identified several instances in which certain bacteria halted fungal growth, and vice versa.

"We are now working with chemists to characterize what the molecules are that different bacteria might use to kill a fungus," Dutton said. "It's also possible that there may be anti-microbials that may arise from this that are normally at play during the formation of a community."

While wider applications for understanding how bacterial communities form may eventually emerge, Dutton said there are still a number of fundamental questions to answer in the short term.

"There are so many wide open questions in thinking about how microbial communities work, that future research could go in a number of different directions," she said. "Our goal is to understand some of these fundamental questions, such as: Are there certain principles that are operating as a community forms, and can we control those factors in the lab?

"Cheese is fascinating to me in its own right – it's somewhat surprising that, for a food that we've been eating for thousands of years, we don't have a complete understanding of the microorganisms that are present in this food."

But now that Dutton has that understanding, does she still eat cheese?

"I do," she said with a laugh. "But I'm very picky, because I like very good cheese now."

Peter Reuell | Eurek Alert!

Further reports about: bacteria cheese environments fungi microbes microbial microbial communities replicate

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>