Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choosing cheese

18.07.2014

Researchers study cheese to unlock secrets of how microbial communities form

Go ahead and call Rachel Dutton's research cheesy if you must. As far as she's concerned, it's anything but an insult.

A Bauer Fellow at the Faculty of Arts and Sciences' Center for Systems Biology, Dutton and her lab study cheese – or more precisely – the bacteria and fungi that live on cheese, in an effort to better understand how microbial communities form.

After studying 137 varieties of cheese collected in 10 different countries, Dutton has been able to identify three general types of microbial communities that live on cheese, opening the door to using each as a "model" community for the study of whether and how various microbes and fungi compete or cooperate as they form communities, what molecules may be involved in the process and what mechanisms may be involved. The study is described in a July 17 paper in Cell.

"We often use model organisms like E. coli or C. elegans because they can give us an understanding of the basic mechanisms and principles of how biology works," Dutton said. "The goal of this work was to identify something like a model organism, but for microbial communities – something we can bring into the lab and easily replicate and manipulate.

"The challenge in studying these communities is that many of the environments where they are found, such as the human body or the soil, are hard to replicate because they're so complicated," she continued. "Cheese seemed to offer a system…in which we knew exactly what these communities were growing on, so we thought we should be able to replicate that environment in the lab."

To understand what a model community might look like, Dutton and her lab first set out to identify dozens of naturally-occurring communities by collecting samples from the rinds of dozens of varieties of cheese around the world.

"We did some travelling in Europe and worked directly with a number of cheese-makers by having them send us samples or vising to collect samples, and in some cases we were able to collect samples from places like Formaggio Kitchen and other cheese shops," she said.

By sequencing those samples, Dutton was able to identify the type of bacteria and fungi in each, and found that while there was wide variation among different samples, the samples could be separated into one of three main types of communities.

"What we ended up finding is there are microbes which occur in all the areas where cheese is made," she said. "What was interesting is if you make the same type of cheese in France or in Vermont, they will have very similar communities. What seems to be driving the type of community you find is the environment that the cheese-maker creates on the surface of the cheese, so you can make two cheeses that are very similar in two different places, or you can make two very different cheeses in the same place."

Working in the lab, Dutton and colleagues were able to isolate each species of microbe and fungi found in the samples and conduct tests aimed at reproducing the communities found on different cheeses. "In many environments, it is challenging to isolate all of the microbes, so we were surprised to find that we could culture all of the species present on cheese rinds. This gives us a great foundation for being able to study communities in the lab," says Julie Button, a postdoctoral researcher in the Dutton lab.

"If we know a particular cheese has certain species, we can mix them together and try to recreate that community in the lab," Dutton said. "For example, we might try to simply put those species together at the same time in equal amounts to see if the community that forms is similar to that found in the sample."

The study was also aimed at understanding how various species of bacteria and fungi interact, and identified several instances in which certain bacteria halted fungal growth, and vice versa.

"We are now working with chemists to characterize what the molecules are that different bacteria might use to kill a fungus," Dutton said. "It's also possible that there may be anti-microbials that may arise from this that are normally at play during the formation of a community."

While wider applications for understanding how bacterial communities form may eventually emerge, Dutton said there are still a number of fundamental questions to answer in the short term.

"There are so many wide open questions in thinking about how microbial communities work, that future research could go in a number of different directions," she said. "Our goal is to understand some of these fundamental questions, such as: Are there certain principles that are operating as a community forms, and can we control those factors in the lab?

"Cheese is fascinating to me in its own right – it's somewhat surprising that, for a food that we've been eating for thousands of years, we don't have a complete understanding of the microorganisms that are present in this food."

But now that Dutton has that understanding, does she still eat cheese?

"I do," she said with a laugh. "But I'm very picky, because I like very good cheese now."

Peter Reuell | Eurek Alert!

Further reports about: bacteria cheese environments fungi microbes microbial microbial communities replicate

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>