Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol transporter structure decoded

21.03.2014

The three-dimensional structure of the transport protein TSPO opens up novel paths for the diagnosis and treatment of brain diseases

Joint press release of the DZNE and Max Planck Institute for Biophysical Chemistry


The cholesterol transporter TSPO in the outer mitochondrial membrane serves as a docking site for important diagnostic markers and for a number of drugs such as diazepam. Source: Łukasz Jaremko, Mariusz Jaremko, Markus Zweckstetter / DZNE, Max Planck Institute for Biophysical Chemistry and UMG

The word "cholesterol" is directly linked in most people's minds with high-fat foods, worrying blood test results, and cardiovascular diseases. However, despite its bad reputation, cholesterol is essential to our wellbeing:

It stabilizes cell membranes and is a raw material for the production of different hormones in the cell’s power plants – the mitochondria. Now, for the first time, scientists in Göttingen have solved the high-resolution structure of the molecular transporter TSPO, which introduces cholesterol into mitochondria.

This protein also serves as a docking site for diagnostic markers and different drugs, such as Valium. The detailed knowledge of its three-dimensional shape and function opens up new diagnostic and therapeutic perspectives.

Not only are mitochondria the most important energy supplier in living cells. They also produce steroid hormones such as testosterone and oestradiol, which control many processes in the body. The raw material for the production of steroid hormones is cholesterol, which must first be transported into mitochondria across two membranes.

This difficult task is carried out by a molecular transport protein named TSPO in the outer mitochondrial membrane. Using nuclear magnetic resonance spectroscopy, two teams working with the Göttingen-based scientists Markus Zweckstetter and Stefan Becker have now shown the complex three-dimensional structure of the protein “at work” in atomic detail.

The researchers achieved this methodical breakthrough by applying an ingenious trick: In their experiments, they coupled the transporter to an important diagnostic marker called PK11195; it was this complex that first gave the scientists analyzable results. In fact, the TSPO structure delivers more than just clues about how cholesterol is transported into the mitochondria.

"We now also have a much better understanding of how TSPO recognizes and binds to diagnostic markers and drugs", explains Markus Zweckstetter, head of research groups at the German Center for Neurodegenerative Diseases (DZNE), at the Max Planck Institute for Biophysical Chemistry, and at the Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) at the University Medical Center of Göttingen (UMG).

TSPO has long been successfully used in diagnostics and treatment of a number of diseases. "When the brain is injured or inflamed, its cells produce more TSPO. This fact is used in the diagnosis of neurodegenerative diseases such as Parkinson's and Alzheimer's", explains Stefan Becker, a protein chemist and Max Planck researcher who works next door to Zweckstetter.

Physicians also use radioactively tagged molecules such as PK11195 to visualize inflamed areas of the brain. A detailed understanding of how TSPO binds to such markers opens up novel paths for diagnostic imaging and could constitute an important step along the way to early detection of such diseases and inflammations.

TSPO also binds several medicinal drugs such as diazepam, also known by the trade name of Valium. Not only is diazepam a widely prescribed sedative; it is also used in the treatment of anxiety and epileptic seizures. The Göttingen researchers hope that detailed information about the transporter’s structure will help to develop new TSPO-binding drugs.

Original publication
Łukasz Jaremko, Mariusz Jaremko, Karin Giller, Stefan Becker, Markus Zweckstetter. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 21 March 2014: Vol. 343 no. 6177 pp. 1363-1366 DOI: 10.1126/science.1248725

Contact
Prof. Dr. Markus Zweckstetter
Research Group Structural Biology in Dementia
German Center for Neurodegenerative Diseases (DZNE)
Research Group Structure Determination of Proteins Using NMR
Max Planck Institute for Biophysical Chemistry
University Medical Center Göttingen
+49 551 201-2220
markus.zweckstetter(at)dzne.de

Dr. Stefan Becker
Project Group Molecular Biology
Department of NMR-based Structural Biology
Max Planck Institute for Biophysical Chemistry
+49 551 201-2222
sabe(at)nmr.mpibpc.mpg.de

Dr. Carmen Rotte
Press and Public Relations
Max Planck Institute for Biophysical Chemistry
+49 551 201-1304
crotte(at)gwdg.de

Dr. Marcus Neitzert
Press and Public Relations
German Center for Neurodegenerative Diseases (DZNE)
+49 43302-271
marcus.neitzert(at)dzne.de

www.dzne.de

Markus Zweckstetter | EurekAlert!

Further reports about: Biology Biophysical DZNE Molecular Valium cholesterol diseases drugs mitochondrial protein

More articles from Life Sciences:

nachricht Strong Evidence – New Insight in Muscle Function
27.04.2015 | Austrian Science Fund FWF

nachricht Cell fusion ‘eats up’ the ‘attractive cell’ in flowering plants
27.04.2015 | Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

Highly Conductive Germanium Nanowires Made by a Simple, One-Step Process

27.04.2015 | Materials Sciences

Cell fusion ‘eats up’ the ‘attractive cell’ in flowering plants

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>