Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol transporter structure decoded

21.03.2014

The three-dimensional structure of the transport protein TSPO opens up novel paths for the diagnosis and treatment of brain diseases

Joint press release of the DZNE and Max Planck Institute for Biophysical Chemistry


The cholesterol transporter TSPO in the outer mitochondrial membrane serves as a docking site for important diagnostic markers and for a number of drugs such as diazepam. Source: Łukasz Jaremko, Mariusz Jaremko, Markus Zweckstetter / DZNE, Max Planck Institute for Biophysical Chemistry and UMG

The word "cholesterol" is directly linked in most people's minds with high-fat foods, worrying blood test results, and cardiovascular diseases. However, despite its bad reputation, cholesterol is essential to our wellbeing:

It stabilizes cell membranes and is a raw material for the production of different hormones in the cell’s power plants – the mitochondria. Now, for the first time, scientists in Göttingen have solved the high-resolution structure of the molecular transporter TSPO, which introduces cholesterol into mitochondria.

This protein also serves as a docking site for diagnostic markers and different drugs, such as Valium. The detailed knowledge of its three-dimensional shape and function opens up new diagnostic and therapeutic perspectives.

Not only are mitochondria the most important energy supplier in living cells. They also produce steroid hormones such as testosterone and oestradiol, which control many processes in the body. The raw material for the production of steroid hormones is cholesterol, which must first be transported into mitochondria across two membranes.

This difficult task is carried out by a molecular transport protein named TSPO in the outer mitochondrial membrane. Using nuclear magnetic resonance spectroscopy, two teams working with the Göttingen-based scientists Markus Zweckstetter and Stefan Becker have now shown the complex three-dimensional structure of the protein “at work” in atomic detail.

The researchers achieved this methodical breakthrough by applying an ingenious trick: In their experiments, they coupled the transporter to an important diagnostic marker called PK11195; it was this complex that first gave the scientists analyzable results. In fact, the TSPO structure delivers more than just clues about how cholesterol is transported into the mitochondria.

"We now also have a much better understanding of how TSPO recognizes and binds to diagnostic markers and drugs", explains Markus Zweckstetter, head of research groups at the German Center for Neurodegenerative Diseases (DZNE), at the Max Planck Institute for Biophysical Chemistry, and at the Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) at the University Medical Center of Göttingen (UMG).

TSPO has long been successfully used in diagnostics and treatment of a number of diseases. "When the brain is injured or inflamed, its cells produce more TSPO. This fact is used in the diagnosis of neurodegenerative diseases such as Parkinson's and Alzheimer's", explains Stefan Becker, a protein chemist and Max Planck researcher who works next door to Zweckstetter.

Physicians also use radioactively tagged molecules such as PK11195 to visualize inflamed areas of the brain. A detailed understanding of how TSPO binds to such markers opens up novel paths for diagnostic imaging and could constitute an important step along the way to early detection of such diseases and inflammations.

TSPO also binds several medicinal drugs such as diazepam, also known by the trade name of Valium. Not only is diazepam a widely prescribed sedative; it is also used in the treatment of anxiety and epileptic seizures. The Göttingen researchers hope that detailed information about the transporter’s structure will help to develop new TSPO-binding drugs.

Original publication
Łukasz Jaremko, Mariusz Jaremko, Karin Giller, Stefan Becker, Markus Zweckstetter. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 21 March 2014: Vol. 343 no. 6177 pp. 1363-1366 DOI: 10.1126/science.1248725

Contact
Prof. Dr. Markus Zweckstetter
Research Group Structural Biology in Dementia
German Center for Neurodegenerative Diseases (DZNE)
Research Group Structure Determination of Proteins Using NMR
Max Planck Institute for Biophysical Chemistry
University Medical Center Göttingen
+49 551 201-2220
markus.zweckstetter(at)dzne.de

Dr. Stefan Becker
Project Group Molecular Biology
Department of NMR-based Structural Biology
Max Planck Institute for Biophysical Chemistry
+49 551 201-2222
sabe(at)nmr.mpibpc.mpg.de

Dr. Carmen Rotte
Press and Public Relations
Max Planck Institute for Biophysical Chemistry
+49 551 201-1304
crotte(at)gwdg.de

Dr. Marcus Neitzert
Press and Public Relations
German Center for Neurodegenerative Diseases (DZNE)
+49 43302-271
marcus.neitzert(at)dzne.de

www.dzne.de

Markus Zweckstetter | EurekAlert!

Further reports about: Biology Biophysical DZNE Molecular Valium cholesterol diseases drugs mitochondrial protein

More articles from Life Sciences:

nachricht Novel 'repair system' discovered in algae may yield new tools for biotechnology
29.07.2016 | Boyce Thompson Institute

nachricht Molecular troublemakers instead of antibiotics?
29.07.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>