Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cholesterol transporter structure decoded


The three-dimensional structure of the transport protein TSPO opens up novel paths for the diagnosis and treatment of brain diseases

Joint press release of the DZNE and Max Planck Institute for Biophysical Chemistry

The cholesterol transporter TSPO in the outer mitochondrial membrane serves as a docking site for important diagnostic markers and for a number of drugs such as diazepam. Source: Łukasz Jaremko, Mariusz Jaremko, Markus Zweckstetter / DZNE, Max Planck Institute for Biophysical Chemistry and UMG

The word "cholesterol" is directly linked in most people's minds with high-fat foods, worrying blood test results, and cardiovascular diseases. However, despite its bad reputation, cholesterol is essential to our wellbeing:

It stabilizes cell membranes and is a raw material for the production of different hormones in the cell’s power plants – the mitochondria. Now, for the first time, scientists in Göttingen have solved the high-resolution structure of the molecular transporter TSPO, which introduces cholesterol into mitochondria.

This protein also serves as a docking site for diagnostic markers and different drugs, such as Valium. The detailed knowledge of its three-dimensional shape and function opens up new diagnostic and therapeutic perspectives.

Not only are mitochondria the most important energy supplier in living cells. They also produce steroid hormones such as testosterone and oestradiol, which control many processes in the body. The raw material for the production of steroid hormones is cholesterol, which must first be transported into mitochondria across two membranes.

This difficult task is carried out by a molecular transport protein named TSPO in the outer mitochondrial membrane. Using nuclear magnetic resonance spectroscopy, two teams working with the Göttingen-based scientists Markus Zweckstetter and Stefan Becker have now shown the complex three-dimensional structure of the protein “at work” in atomic detail.

The researchers achieved this methodical breakthrough by applying an ingenious trick: In their experiments, they coupled the transporter to an important diagnostic marker called PK11195; it was this complex that first gave the scientists analyzable results. In fact, the TSPO structure delivers more than just clues about how cholesterol is transported into the mitochondria.

"We now also have a much better understanding of how TSPO recognizes and binds to diagnostic markers and drugs", explains Markus Zweckstetter, head of research groups at the German Center for Neurodegenerative Diseases (DZNE), at the Max Planck Institute for Biophysical Chemistry, and at the Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) at the University Medical Center of Göttingen (UMG).

TSPO has long been successfully used in diagnostics and treatment of a number of diseases. "When the brain is injured or inflamed, its cells produce more TSPO. This fact is used in the diagnosis of neurodegenerative diseases such as Parkinson's and Alzheimer's", explains Stefan Becker, a protein chemist and Max Planck researcher who works next door to Zweckstetter.

Physicians also use radioactively tagged molecules such as PK11195 to visualize inflamed areas of the brain. A detailed understanding of how TSPO binds to such markers opens up novel paths for diagnostic imaging and could constitute an important step along the way to early detection of such diseases and inflammations.

TSPO also binds several medicinal drugs such as diazepam, also known by the trade name of Valium. Not only is diazepam a widely prescribed sedative; it is also used in the treatment of anxiety and epileptic seizures. The Göttingen researchers hope that detailed information about the transporter’s structure will help to develop new TSPO-binding drugs.

Original publication
Łukasz Jaremko, Mariusz Jaremko, Karin Giller, Stefan Becker, Markus Zweckstetter. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 21 March 2014: Vol. 343 no. 6177 pp. 1363-1366 DOI: 10.1126/science.1248725

Prof. Dr. Markus Zweckstetter
Research Group Structural Biology in Dementia
German Center for Neurodegenerative Diseases (DZNE)
Research Group Structure Determination of Proteins Using NMR
Max Planck Institute for Biophysical Chemistry
University Medical Center Göttingen
+49 551 201-2220

Dr. Stefan Becker
Project Group Molecular Biology
Department of NMR-based Structural Biology
Max Planck Institute for Biophysical Chemistry
+49 551 201-2222

Dr. Carmen Rotte
Press and Public Relations
Max Planck Institute for Biophysical Chemistry
+49 551 201-1304

Dr. Marcus Neitzert
Press and Public Relations
German Center for Neurodegenerative Diseases (DZNE)
+49 43302-271

Markus Zweckstetter | EurekAlert!

Further reports about: Biology Biophysical DZNE Molecular Valium cholesterol diseases drugs mitochondrial protein

More articles from Life Sciences:

nachricht New study reveals what's behind a tarantula's blue hue
01.12.2015 | University of California - San Diego

nachricht Tracing a path toward neuronal cell death
01.12.2015 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>