Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol transporter structure decoded

21.03.2014

The three-dimensional structure of the transport protein TSPO opens up novel paths for the diagnosis and treatment of brain diseases

Joint press release of the DZNE and Max Planck Institute for Biophysical Chemistry


The cholesterol transporter TSPO in the outer mitochondrial membrane serves as a docking site for important diagnostic markers and for a number of drugs such as diazepam. Source: Łukasz Jaremko, Mariusz Jaremko, Markus Zweckstetter / DZNE, Max Planck Institute for Biophysical Chemistry and UMG

The word "cholesterol" is directly linked in most people's minds with high-fat foods, worrying blood test results, and cardiovascular diseases. However, despite its bad reputation, cholesterol is essential to our wellbeing:

It stabilizes cell membranes and is a raw material for the production of different hormones in the cell’s power plants – the mitochondria. Now, for the first time, scientists in Göttingen have solved the high-resolution structure of the molecular transporter TSPO, which introduces cholesterol into mitochondria.

This protein also serves as a docking site for diagnostic markers and different drugs, such as Valium. The detailed knowledge of its three-dimensional shape and function opens up new diagnostic and therapeutic perspectives.

Not only are mitochondria the most important energy supplier in living cells. They also produce steroid hormones such as testosterone and oestradiol, which control many processes in the body. The raw material for the production of steroid hormones is cholesterol, which must first be transported into mitochondria across two membranes.

This difficult task is carried out by a molecular transport protein named TSPO in the outer mitochondrial membrane. Using nuclear magnetic resonance spectroscopy, two teams working with the Göttingen-based scientists Markus Zweckstetter and Stefan Becker have now shown the complex three-dimensional structure of the protein “at work” in atomic detail.

The researchers achieved this methodical breakthrough by applying an ingenious trick: In their experiments, they coupled the transporter to an important diagnostic marker called PK11195; it was this complex that first gave the scientists analyzable results. In fact, the TSPO structure delivers more than just clues about how cholesterol is transported into the mitochondria.

"We now also have a much better understanding of how TSPO recognizes and binds to diagnostic markers and drugs", explains Markus Zweckstetter, head of research groups at the German Center for Neurodegenerative Diseases (DZNE), at the Max Planck Institute for Biophysical Chemistry, and at the Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) at the University Medical Center of Göttingen (UMG).

TSPO has long been successfully used in diagnostics and treatment of a number of diseases. "When the brain is injured or inflamed, its cells produce more TSPO. This fact is used in the diagnosis of neurodegenerative diseases such as Parkinson's and Alzheimer's", explains Stefan Becker, a protein chemist and Max Planck researcher who works next door to Zweckstetter.

Physicians also use radioactively tagged molecules such as PK11195 to visualize inflamed areas of the brain. A detailed understanding of how TSPO binds to such markers opens up novel paths for diagnostic imaging and could constitute an important step along the way to early detection of such diseases and inflammations.

TSPO also binds several medicinal drugs such as diazepam, also known by the trade name of Valium. Not only is diazepam a widely prescribed sedative; it is also used in the treatment of anxiety and epileptic seizures. The Göttingen researchers hope that detailed information about the transporter’s structure will help to develop new TSPO-binding drugs.

Original publication
Łukasz Jaremko, Mariusz Jaremko, Karin Giller, Stefan Becker, Markus Zweckstetter. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 21 March 2014: Vol. 343 no. 6177 pp. 1363-1366 DOI: 10.1126/science.1248725

Contact
Prof. Dr. Markus Zweckstetter
Research Group Structural Biology in Dementia
German Center for Neurodegenerative Diseases (DZNE)
Research Group Structure Determination of Proteins Using NMR
Max Planck Institute for Biophysical Chemistry
University Medical Center Göttingen
+49 551 201-2220
markus.zweckstetter(at)dzne.de

Dr. Stefan Becker
Project Group Molecular Biology
Department of NMR-based Structural Biology
Max Planck Institute for Biophysical Chemistry
+49 551 201-2222
sabe(at)nmr.mpibpc.mpg.de

Dr. Carmen Rotte
Press and Public Relations
Max Planck Institute for Biophysical Chemistry
+49 551 201-1304
crotte(at)gwdg.de

Dr. Marcus Neitzert
Press and Public Relations
German Center for Neurodegenerative Diseases (DZNE)
+49 43302-271
marcus.neitzert(at)dzne.de

www.dzne.de

Markus Zweckstetter | EurekAlert!

Further reports about: Biology Biophysical DZNE Molecular Valium cholesterol diseases drugs mitochondrial protein

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>