Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholera: Fighting Fire with Fire

04.07.2014

 

Binding at five sites: effective cholera inhibitor based on cholera toxins

 

Cholera against cholera: a novel inhibitor prevents the cholera toxin from binding to carbohydrates found on the surface of intestinal cells. An international team of researchers has described their elegant concept in the journal Angewandte Chemie:

The protein scaffold of the inhibitor is based on an inactive cholera toxin. It is equipped with five sugar moieties to act as ligands. The inhibitor’s size and number of binding sites are both perfectly matched to the cholera toxin bearing five binding sites.

Cholera is a bacterial infectious disease that is primarily transmitted through insufficiently treated drinking water and contaminated foods. The actual pathogen is a toxin released by the bacteria; it attacks the cells of the intestine and causes life-threatening diarrhea.

... more about:
»Cholera »Fighting »GM1 »ligands »sugar

Cholera toxin is a protein consisting of a toxic A unit and five nontoxic B units (CTB). Its shape resembles a blossom with five petals. The “petals” are nontoxic, but they bind to special carbohydrates—the oligosaccharide units on glycolipid GM1—on the surface of intestinal cells, initiating uptake of the toxin. Each of the five B subunits possesses a specific binding site for the special sugar motif.

In order to put a stop to the pentavalent cholera toxin, scientist at the University of Leeds (UK), Wageningen University (Netherlands), and King Abdulaziz University in Jeddah (Saudi Arabia) have now developed a pentavalent inhibitor. To make it properly fit with its counterpart they fell back on the old principle of “fighting fire with fire”: They used an inactive version of the five “petals” from CTB subunits as the protein scaffold for their inhibitor.

Led by Bruce Turnbull, the researchers induced a mutation in the GM1 binding site of the CTB subunits so that the inhibitor does not bind to the intestinal cells. In addition, a special side chain on each of the “petals” was chemically altered so that they could undergo a coupling reaction by which five ligands were then attached with flexible spacers. The ligands were chosen to be the ideal binding partners for the toxin:

the saccharide units from glycolipid GM1. The advantage of this method is that the inhibitor presents the toxin with five ligands that are in exactly the same distance apart as the five binding sites of the toxin, making it the perfect counterpart. The potency of the new pentavalent inhibitor for its target molecule is thus correspondingly high.

Although the synthesis of the sugar motif is relatively complicated, the protein scaffold can easily be produced genetically on an industrial scale, and can easily be chemically modified and the saccharides attached. The researchers hope that this synthetic technique can be used to develop further multivalent inhibitors for other protein–carbohydrate interactions.

About the Author

Dr. Bruce Turnbull is an Associate Professor in the School of Chemistry and Astbury Centre for Structural Molecular Biology at the University of Leeds. He chairs an EU COST Action network on Multivalent Glycosystems for Nanoscience and was the 2013 recipient of the Royal Society of Chemistry Carbohydrate Award.

Author: W. Bruce Turnbull, University of Leeds (United Kingdom), http://www.chem.leeds.ac.uk/People/Turnbull.html

Title: A Protein-Based Pentavalent Inhibitor of the Cholera Toxin B-Subunit

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201404397

W. Bruce Turnbull | GDCh

Further reports about: Cholera Fighting GM1 ligands sugar

More articles from Life Sciences:

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

nachricht NIH researchers identify striking genomic signature shared by 5 types of cancer
05.02.2016 | NIH/National Human Genome Research Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>