Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cholera: Fighting Fire with Fire



Binding at five sites: effective cholera inhibitor based on cholera toxins


Cholera against cholera: a novel inhibitor prevents the cholera toxin from binding to carbohydrates found on the surface of intestinal cells. An international team of researchers has described their elegant concept in the journal Angewandte Chemie:

The protein scaffold of the inhibitor is based on an inactive cholera toxin. It is equipped with five sugar moieties to act as ligands. The inhibitor’s size and number of binding sites are both perfectly matched to the cholera toxin bearing five binding sites.

Cholera is a bacterial infectious disease that is primarily transmitted through insufficiently treated drinking water and contaminated foods. The actual pathogen is a toxin released by the bacteria; it attacks the cells of the intestine and causes life-threatening diarrhea.

... more about:
»Cholera »Fighting »GM1 »ligands »sugar

Cholera toxin is a protein consisting of a toxic A unit and five nontoxic B units (CTB). Its shape resembles a blossom with five petals. The “petals” are nontoxic, but they bind to special carbohydrates—the oligosaccharide units on glycolipid GM1—on the surface of intestinal cells, initiating uptake of the toxin. Each of the five B subunits possesses a specific binding site for the special sugar motif.

In order to put a stop to the pentavalent cholera toxin, scientist at the University of Leeds (UK), Wageningen University (Netherlands), and King Abdulaziz University in Jeddah (Saudi Arabia) have now developed a pentavalent inhibitor. To make it properly fit with its counterpart they fell back on the old principle of “fighting fire with fire”: They used an inactive version of the five “petals” from CTB subunits as the protein scaffold for their inhibitor.

Led by Bruce Turnbull, the researchers induced a mutation in the GM1 binding site of the CTB subunits so that the inhibitor does not bind to the intestinal cells. In addition, a special side chain on each of the “petals” was chemically altered so that they could undergo a coupling reaction by which five ligands were then attached with flexible spacers. The ligands were chosen to be the ideal binding partners for the toxin:

the saccharide units from glycolipid GM1. The advantage of this method is that the inhibitor presents the toxin with five ligands that are in exactly the same distance apart as the five binding sites of the toxin, making it the perfect counterpart. The potency of the new pentavalent inhibitor for its target molecule is thus correspondingly high.

Although the synthesis of the sugar motif is relatively complicated, the protein scaffold can easily be produced genetically on an industrial scale, and can easily be chemically modified and the saccharides attached. The researchers hope that this synthetic technique can be used to develop further multivalent inhibitors for other protein–carbohydrate interactions.

About the Author

Dr. Bruce Turnbull is an Associate Professor in the School of Chemistry and Astbury Centre for Structural Molecular Biology at the University of Leeds. He chairs an EU COST Action network on Multivalent Glycosystems for Nanoscience and was the 2013 recipient of the Royal Society of Chemistry Carbohydrate Award.

Author: W. Bruce Turnbull, University of Leeds (United Kingdom),

Title: A Protein-Based Pentavalent Inhibitor of the Cholera Toxin B-Subunit

Angewandte Chemie International Edition, Permalink to the article:

W. Bruce Turnbull | GDCh

Further reports about: Cholera Fighting GM1 ligands sugar

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>