Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chlamydia promotes gene mutations

21.06.2013
Outcome of experimental Chlamydia infections points towards cancer

Chlamydia trachomatis is a human pathogen that is the leading cause of bacterial sexually transmitted disease worldwide with more than 90 million new cases of genital infections occurring each year. About 70 percent of women infected with Chlamydia remain asymptomatic and these bacteria can establish chronic infections for months, or even years. Even when it causes no symptoms, Chlamydia can damage a woman’s reproductive organs.


Chlamydia (green) sheltered inside a human host cell (red). © MPI for Infection Biology/V. Brinkmann

In addition, standard antibacterial drugs are proving increasingly ineffective in complete eradication, as Chlamydia goes in to persistent mode, leading to asymptomatic chronic infection. Researchers at the Max Planck Institute for Infection Biology in Berlin (MPIIB) now show that Chlamydia infections can cause mutations in the host DNA by overriding the normal mechanisms by which their host prevents unregulated growth of genetically damaged cells that pave the way for the development of cancer.

Owing to their intracellular lifestyle Chlamydia depend on various host cell functions for their survival. Chlamydia manipulates the host cell mechanism to favour its growth, however the consequences of such alterations on the fate of host cells remains enigmatic. Even more worrying is mounting epidemiological evidence which links Chlamydia infections with the development of cervical and ovarian cancer. Cindrilla Chumduri, Rajendra Kumar Gurumurthy and Thomas F. Meyer, researchers at the Max Planck Institute for Infection Biology in Berlin, have now discovered that Chlamydia induces long-lasting effects on the genome and epi-genome of their host cells. Such changes are increasingly implicated in the development of a range of cancers.

The team found increased levels of DNA breaks in Chlamydia-infected cells. In normal cells, depending on the extent of damage, cells either “commit suicide” or activate repair by special protein complexes in a process called the DNA Damage Response, which reseals the broken strands of DNA and makes sure the sequence of the genetic code has not been changed. Crucially, in Chlamydia-infected cells the DNA Damage Response was impaired, leading to an error-prone repair of the DNA breaks- a potential cause of mutations. Strikingly, despite the presence of extensive DNA damage, Chlamydia infected cells continued to proliferate, facilitated by additional pro-survival signals activated in the host cells by Chlamydia. The flip-side of this forced survival of damaged cells is an increased tendency to evade the normal mechanisms that eliminate cells carrying mutations that could lead to cancer. The team believe that this could be the first step on the path to carcinogenesis of the infected cells, due to uncontrolled cell growth in the presence of accumulating DNA damage – the hallmark of cancer.

The identification of infections as the origin of human cancers is important since it would allow early prevention of cancerogenesis by means of vaccination or antibiotic treatment. Such preventive strategies are currently successfully pursued against the cancer-inducing agents Human Papiloma Virus (HPV) and Helicobacter pylori, the etiological agents of cervical and gastric cancer, respectively. However, many infection-based cancer etiologies have not been firmly established and therefore cancer treatment is usually restricted to patients at an advanced stage and with an established cancer diagnosis. The department of Professor Meyer at MPIIB therefore vigorously pursues several lines of research to unequivocally assess the linkage between bacterial infections and cancer, apart from the well-known carcinogenic role of H. pylori. The current paper by Chumduri et al. constitutes one important mosaic piece, corroborating a potential link between female ascending Chlamydia infections and ovarian cancer in particular.

Contact

Dr. Rike Zietlow
Max Planck Institute for Infection Biology, Berlin
Phone: +49 30 28460-461
Email: tfm@­mpiib-berlin.mpg.de
Dr. Sabine Englich
Max Planck Institute for Infection Biology, Berlin
Phone: +49 30 28460-142
Email: englich@­mpiib-berlin.mpg.de

Original publication
Cindrilla Chumduri, Rajendra Kumar Gurumurthy, Piotr K. Zadora, Yang Mi, & Thomas F. Meyer
Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response

Cell Host & Microbe 13, 746–758

Dr. Rike Zietlow | Max-Planck-Institute
Further information:
http://www.mpg.de/7329412/chlamydia-gene-mutations

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>