Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chlamydia promotes gene mutations

Outcome of experimental Chlamydia infections points towards cancer

Chlamydia trachomatis is a human pathogen that is the leading cause of bacterial sexually transmitted disease worldwide with more than 90 million new cases of genital infections occurring each year. About 70 percent of women infected with Chlamydia remain asymptomatic and these bacteria can establish chronic infections for months, or even years. Even when it causes no symptoms, Chlamydia can damage a woman’s reproductive organs.

Chlamydia (green) sheltered inside a human host cell (red). © MPI for Infection Biology/V. Brinkmann

In addition, standard antibacterial drugs are proving increasingly ineffective in complete eradication, as Chlamydia goes in to persistent mode, leading to asymptomatic chronic infection. Researchers at the Max Planck Institute for Infection Biology in Berlin (MPIIB) now show that Chlamydia infections can cause mutations in the host DNA by overriding the normal mechanisms by which their host prevents unregulated growth of genetically damaged cells that pave the way for the development of cancer.

Owing to their intracellular lifestyle Chlamydia depend on various host cell functions for their survival. Chlamydia manipulates the host cell mechanism to favour its growth, however the consequences of such alterations on the fate of host cells remains enigmatic. Even more worrying is mounting epidemiological evidence which links Chlamydia infections with the development of cervical and ovarian cancer. Cindrilla Chumduri, Rajendra Kumar Gurumurthy and Thomas F. Meyer, researchers at the Max Planck Institute for Infection Biology in Berlin, have now discovered that Chlamydia induces long-lasting effects on the genome and epi-genome of their host cells. Such changes are increasingly implicated in the development of a range of cancers.

The team found increased levels of DNA breaks in Chlamydia-infected cells. In normal cells, depending on the extent of damage, cells either “commit suicide” or activate repair by special protein complexes in a process called the DNA Damage Response, which reseals the broken strands of DNA and makes sure the sequence of the genetic code has not been changed. Crucially, in Chlamydia-infected cells the DNA Damage Response was impaired, leading to an error-prone repair of the DNA breaks- a potential cause of mutations. Strikingly, despite the presence of extensive DNA damage, Chlamydia infected cells continued to proliferate, facilitated by additional pro-survival signals activated in the host cells by Chlamydia. The flip-side of this forced survival of damaged cells is an increased tendency to evade the normal mechanisms that eliminate cells carrying mutations that could lead to cancer. The team believe that this could be the first step on the path to carcinogenesis of the infected cells, due to uncontrolled cell growth in the presence of accumulating DNA damage – the hallmark of cancer.

The identification of infections as the origin of human cancers is important since it would allow early prevention of cancerogenesis by means of vaccination or antibiotic treatment. Such preventive strategies are currently successfully pursued against the cancer-inducing agents Human Papiloma Virus (HPV) and Helicobacter pylori, the etiological agents of cervical and gastric cancer, respectively. However, many infection-based cancer etiologies have not been firmly established and therefore cancer treatment is usually restricted to patients at an advanced stage and with an established cancer diagnosis. The department of Professor Meyer at MPIIB therefore vigorously pursues several lines of research to unequivocally assess the linkage between bacterial infections and cancer, apart from the well-known carcinogenic role of H. pylori. The current paper by Chumduri et al. constitutes one important mosaic piece, corroborating a potential link between female ascending Chlamydia infections and ovarian cancer in particular.


Dr. Rike Zietlow
Max Planck Institute for Infection Biology, Berlin
Phone: +49 30 28460-461
Email: tfm@­
Dr. Sabine Englich
Max Planck Institute for Infection Biology, Berlin
Phone: +49 30 28460-142
Email: englich@­

Original publication
Cindrilla Chumduri, Rajendra Kumar Gurumurthy, Piotr K. Zadora, Yang Mi, & Thomas F. Meyer
Chlamydia infection promotes host DNA damage and proliferation but impairs the DNA damage response

Cell Host & Microbe 13, 746–758

Dr. Rike Zietlow | Max-Planck-Institute
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>