Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chips are down as Manchester makes protein scanning breakthrough

25.08.2008
Scientists at The University of Manchester have developed a new and fast method for making biological ‘chips’ – technology that could lead to quick testing for serious diseases, fast detection of MRSA infections and rapid discovery of new drugs.

Researchers working at the Manchester Interdisciplinary Biocentre (MIB) and The School of Chemistry have unveiled a new technique for producing functional ‘protein chips’ in a paper in the Journal of the American Chemical Society (JACS), published online today (22 August 2008).

Protein chips – or ‘protein arrays’ as they are more commonly known – are objects such as slides that have proteins attached to them and allow important scientific data about the behaviour of proteins to be gathered.

Functional protein arrays could give scientists the ability to run tests on tens of thousands of different proteins simultaneously, observing how they interact with cells, other proteins, DNA and drugs.

As proteins can be placed and located precisely on a ‘chip’, it would be possible to scan large numbers of them at the same time but then isolate the data relating to individual proteins.

These chips would allow large amounts of data to be generated with the minimum use of materials – especially rare proteins that are only available in very small amounts.

The Manchester team of Dr Lu Shin Wong, Dr Jenny Thirlway and Prof Jason Micklefield say the technical challenges of attaching proteins in a reliable way have previously held back the widespread application and development of protein chips.

Existing techniques for attaching proteins often results in them becoming fixed in random orientations, which can cause them to become damaged and inactive.

Current methods also require proteins to be purified first – and this means that creating large and powerful protein arrays would be hugely costly in terms of time, manpower and money.

Now researchers at The University of Manchester say they have found a reliable new way of attaching active proteins to a chip.

Biological chemists have engineered modified proteins with a special tag, which makes the protein attach to a surface in a highly specified way and ensures it remains functional.

The attachment occurs in a single step in just a few hours – unlike with existing techniques – and requires no prior chemical modification of the protein of interest or additional chemical steps.

Prof Jason Micklefield from the School of Chemistry, said: “DNA chips have revolutionised biological and medical science. For many years scientists have tried to develop similar protein chips but technical difficulties associated with attaching large numbers of proteins to surfaces have prevented their widespread application.

“The method we have developed could have profound applications in the diagnosis of disease, screening of new drugs and in the detection of bacteria, pollutants, toxins and other molecules.”

Researchers from The University of Manchester are currently working as part of a consortium of several universities on a £3.1 million project which is aiming to develop so-called ‘nanoarrays’.

These would be much smaller than existing ‘micro arrays’ and would allow thousands more protein samples to be placed on a single ‘chip’, reducing cost and vastly increasing the volume of data that could be simultaneously collected.

This project, which involves the universities of Manchester, Sheffield, Nottingham and Glasgow, is being supported by Research Councils UK (RCUK), the umbrella body for academic research funding in the UK.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>