Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chimpanzees Shed Light on Origins of Human Walking

09.10.2015

Stony Brook-led research demonstrates how upper body motion contributed to walking proficiency in our early human ancestors

A research team led by Stony Brook University investigating human and chimpanzee locomotion have uncovered unexpected similarities in the way the two species use their upper body during two-legged walking.


Nathan Thompson, Lucille Betti-Nash, and Deming Yang

This image depicts pelvis and ribcage rotations during bipedal locomotion. Despite differences in overall motion, there is as much mobility between the pelvis and ribcage in humans as in chimpanzees, suggesting more human-like abilities in our earliest ancestors than previously thought.

The results, reported in Nature Communications, indicate that our early human ancestors, including the famous fossil ‘Lucy’ (a species known as Australopithecus afarensis), may have been able to use their torsos to increase walking efficiency in the same way as modern humans.

The torso (the part of the body that includes the ribcage, belly and pelvis) of chimpanzees has long been thought to be a rigid block, best suited for a life of tree climbing. Humans, on the other hand, have long and flexible torsos that aid in walking by allowing us to rotate our upper body in the opposite direction of our lower body.

The findings from the paper, titled “Surprising trunk rotational capabilities in chimpanzees and implications for bipedal walking proficiency in early humans,” changes the evolutionary view of how early human ancestors walked and what they were able to do.

“During walking, we actually observed as much rotation within the torsos of chimpanzees as in humans,” said Nathan Thompson, lead author and a PhD student in the Department of Anatomical Sciences at Stony Brook University.

“This means that the widely accepted assumptions in the scientific community about how the chimpanzee torso works based on the skeleton alone are incorrect. Our results also point to the notion that a limitation to upright walking that we thought affected Lucy and other early human ancestors probably was not a limitation at all.”

The research team used high-speed cameras to track and compare how the torsos of humans and chimpanzees actually moved during bipedal walking. They studied the movements by way of three-dimensional kinematic analyses and computer-generated comparisons.

They discovered that the main difference between human and chimpanzee bipedalism is that chimps swing their hips much more.

“Only when our early ancestors were able to reduce this hip rotation were their upper bodies able to play a human-like role in promoting efficient bipedal walking,” said Thompson. “When this actual transition occurred is still an open question.”

There is a continuing debate about how the hips of our ancestors worked compared to ours.

“For instance, depending on who you ask, the 3.2 million-year-old Lucy fossil either rotated her pelvis exactly like modern humans or up to 2.5 times more,” he explained.

Given this uncertainty, the research team modeled the transition from a more chimp-like pattern of the upper body movement to that of a more human-like pattern. They found that even if Lucy rotated her pelvis 50 percent more than modern humans, her upper body would have functioned essentially like ours. This means that even as early as 3.2 million years ago Lucy might have been able to save work and energy in much the same way as humans do today.

“As we get a better idea of how our closest living relatives move, we are able to learn much more about the isolated piles of early human bones that the fossil record leaves us,” added Thompson. “Only then can we paint a complete picture of how we evolved into what we are today.”

Co-authors on the paper include Susan Larson, Brigitte Demes, and Nicholas Holowka of Stony Brook University, and Matthew C. O’Neill of the University of Arizona.

The research was funded by the National Science Foundation and The Leakey Foundation.

Contact Information
Gregory Filiano
Manager of Media Relations, School of Medicine
Gregory.Filiano@stonybrook.edu
Phone: 631-444-9343

Gregory Filiano | newswise
Further information:
http://www.stonybrook.edu

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>