Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Childrens Hospital LA discovers growth factor essential to epicardial cell function

06.10.2010
Platelet derived growth factor (PDGF) plays role in heart regeneration

In research that one day may lead to the discovery of how to regenerate tissue damaged by heart disease, investigators at Childrens Hospital Los Angeles have identified PDGF as a key factor in the proliferation and transformation of epicardial cells, one type of cell that surrounds heart muscle and contributes to vessels.

The study was published online September 21 in advance of the publication of the Proceedings of the National Academy of Sciences of the United States of America. Ching-Ling (Ellen) Lien, PhD, led a team of researchers at the Developmental Biology and Regenerative Medicine Program and Heart Institute that included Jieun Kim, PhD, Qiong Wu, MS, Yolanda Zhang, MD, Katie M. Wiens, PhD, Ying Huang, MS, Nicole Rubin, BS. The research was supported by Vaughn A. Starnes, MD director of the Childrens Hospital Los Angeles Heart Institute, and joined by Hiroyuki Shimada, MD, Tai-lan Tuan, PhD, of The Saban Research Institute of Childrens Hospital.

The team demonstrated that PDGF 'signaling' is required for epicardial cell proliferation, as well as supportive cell and coronary blood vessel formation leading to regeneration of cardiac tissue in zebrafish.

Although adult human hearts cannot generate new cardiac muscle, the tiny, freshwater zebrafish is capable of fully regenerating its heart after injury or amputation. Because of this unique ability to regenerate, the zebrafish has become a model for studying ways of possibly 'turning on' the repair process in the human heart.

In zebrafish, newly formed coronary vessels supply blood to the regenerating heart. The development of coronary blood vessels during zebrafish heart regeneration has been postulated to occur in the same way as the heart and vessels were originally formed in the embryo. Dr. Lien, an assistant professor of surgery at the Keck School of Medicine at the University of Southern California, and her team found biochemical markers consistent with embryonic development in the regenerated zebrafish hearts.

The team also found that when PDGF signaling was blocked, epicardial cell proliferation, expression of the embryonic biochemical markers, and coronary blood vessel development were impaired.

"By understanding the mechanism involved in developing a new blood supply to injured cardiac tissue, we can begin to develop a therapeutic strategy for the treatment of heart disease in humans," noted Dr. David Warburton, director of Developmental Biology and Regenerative Medicine at The Saban Research Institute.

The Saban Research Institute at Childrens Hospital Los Angeles is among the largest and most productive pediatric research facilities in the United States, with 100 investigators at work on 186 laboratory studies, clinical trials and community-based research and health services. The Saban Research Institute is ranked eighth in National Institutes of Health funding among children's hospitals in the United States.

Founded in 1901, Childrens Hospital Los Angeles is one of the nation's leading children's hospitals and is acknowledged worldwide for its leadership in pediatric and adolescent health. Childrens Hospital Los Angeles is one of only seven children's hospitals in the nation – and the only children's hospital on the West Coast – ranked for two consecutive years in all 10 pediatric specialties in the U.S. News & World Report rankings and named to the magazine's "Honor Roll" of children's hospitals.

Childrens Hospital Los Angeles is a premier teaching hospital and has been affiliated with the Keck School of Medicine of the University of Southern California since 1932.

Ellin Kavanagh | EurekAlert!
Further information:
http://www.usc.edu
http://www.chla.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>