Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Childrens Hospital LA discovers growth factor essential to epicardial cell function

06.10.2010
Platelet derived growth factor (PDGF) plays role in heart regeneration

In research that one day may lead to the discovery of how to regenerate tissue damaged by heart disease, investigators at Childrens Hospital Los Angeles have identified PDGF as a key factor in the proliferation and transformation of epicardial cells, one type of cell that surrounds heart muscle and contributes to vessels.

The study was published online September 21 in advance of the publication of the Proceedings of the National Academy of Sciences of the United States of America. Ching-Ling (Ellen) Lien, PhD, led a team of researchers at the Developmental Biology and Regenerative Medicine Program and Heart Institute that included Jieun Kim, PhD, Qiong Wu, MS, Yolanda Zhang, MD, Katie M. Wiens, PhD, Ying Huang, MS, Nicole Rubin, BS. The research was supported by Vaughn A. Starnes, MD director of the Childrens Hospital Los Angeles Heart Institute, and joined by Hiroyuki Shimada, MD, Tai-lan Tuan, PhD, of The Saban Research Institute of Childrens Hospital.

The team demonstrated that PDGF 'signaling' is required for epicardial cell proliferation, as well as supportive cell and coronary blood vessel formation leading to regeneration of cardiac tissue in zebrafish.

Although adult human hearts cannot generate new cardiac muscle, the tiny, freshwater zebrafish is capable of fully regenerating its heart after injury or amputation. Because of this unique ability to regenerate, the zebrafish has become a model for studying ways of possibly 'turning on' the repair process in the human heart.

In zebrafish, newly formed coronary vessels supply blood to the regenerating heart. The development of coronary blood vessels during zebrafish heart regeneration has been postulated to occur in the same way as the heart and vessels were originally formed in the embryo. Dr. Lien, an assistant professor of surgery at the Keck School of Medicine at the University of Southern California, and her team found biochemical markers consistent with embryonic development in the regenerated zebrafish hearts.

The team also found that when PDGF signaling was blocked, epicardial cell proliferation, expression of the embryonic biochemical markers, and coronary blood vessel development were impaired.

"By understanding the mechanism involved in developing a new blood supply to injured cardiac tissue, we can begin to develop a therapeutic strategy for the treatment of heart disease in humans," noted Dr. David Warburton, director of Developmental Biology and Regenerative Medicine at The Saban Research Institute.

The Saban Research Institute at Childrens Hospital Los Angeles is among the largest and most productive pediatric research facilities in the United States, with 100 investigators at work on 186 laboratory studies, clinical trials and community-based research and health services. The Saban Research Institute is ranked eighth in National Institutes of Health funding among children's hospitals in the United States.

Founded in 1901, Childrens Hospital Los Angeles is one of the nation's leading children's hospitals and is acknowledged worldwide for its leadership in pediatric and adolescent health. Childrens Hospital Los Angeles is one of only seven children's hospitals in the nation – and the only children's hospital on the West Coast – ranked for two consecutive years in all 10 pediatric specialties in the U.S. News & World Report rankings and named to the magazine's "Honor Roll" of children's hospitals.

Childrens Hospital Los Angeles is a premier teaching hospital and has been affiliated with the Keck School of Medicine of the University of Southern California since 1932.

Ellin Kavanagh | EurekAlert!
Further information:
http://www.usc.edu
http://www.chla.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>