Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Childrens Hospital LA discovers growth factor essential to epicardial cell function

06.10.2010
Platelet derived growth factor (PDGF) plays role in heart regeneration

In research that one day may lead to the discovery of how to regenerate tissue damaged by heart disease, investigators at Childrens Hospital Los Angeles have identified PDGF as a key factor in the proliferation and transformation of epicardial cells, one type of cell that surrounds heart muscle and contributes to vessels.

The study was published online September 21 in advance of the publication of the Proceedings of the National Academy of Sciences of the United States of America. Ching-Ling (Ellen) Lien, PhD, led a team of researchers at the Developmental Biology and Regenerative Medicine Program and Heart Institute that included Jieun Kim, PhD, Qiong Wu, MS, Yolanda Zhang, MD, Katie M. Wiens, PhD, Ying Huang, MS, Nicole Rubin, BS. The research was supported by Vaughn A. Starnes, MD director of the Childrens Hospital Los Angeles Heart Institute, and joined by Hiroyuki Shimada, MD, Tai-lan Tuan, PhD, of The Saban Research Institute of Childrens Hospital.

The team demonstrated that PDGF 'signaling' is required for epicardial cell proliferation, as well as supportive cell and coronary blood vessel formation leading to regeneration of cardiac tissue in zebrafish.

Although adult human hearts cannot generate new cardiac muscle, the tiny, freshwater zebrafish is capable of fully regenerating its heart after injury or amputation. Because of this unique ability to regenerate, the zebrafish has become a model for studying ways of possibly 'turning on' the repair process in the human heart.

In zebrafish, newly formed coronary vessels supply blood to the regenerating heart. The development of coronary blood vessels during zebrafish heart regeneration has been postulated to occur in the same way as the heart and vessels were originally formed in the embryo. Dr. Lien, an assistant professor of surgery at the Keck School of Medicine at the University of Southern California, and her team found biochemical markers consistent with embryonic development in the regenerated zebrafish hearts.

The team also found that when PDGF signaling was blocked, epicardial cell proliferation, expression of the embryonic biochemical markers, and coronary blood vessel development were impaired.

"By understanding the mechanism involved in developing a new blood supply to injured cardiac tissue, we can begin to develop a therapeutic strategy for the treatment of heart disease in humans," noted Dr. David Warburton, director of Developmental Biology and Regenerative Medicine at The Saban Research Institute.

The Saban Research Institute at Childrens Hospital Los Angeles is among the largest and most productive pediatric research facilities in the United States, with 100 investigators at work on 186 laboratory studies, clinical trials and community-based research and health services. The Saban Research Institute is ranked eighth in National Institutes of Health funding among children's hospitals in the United States.

Founded in 1901, Childrens Hospital Los Angeles is one of the nation's leading children's hospitals and is acknowledged worldwide for its leadership in pediatric and adolescent health. Childrens Hospital Los Angeles is one of only seven children's hospitals in the nation – and the only children's hospital on the West Coast – ranked for two consecutive years in all 10 pediatric specialties in the U.S. News & World Report rankings and named to the magazine's "Honor Roll" of children's hospitals.

Childrens Hospital Los Angeles is a premier teaching hospital and has been affiliated with the Keck School of Medicine of the University of Southern California since 1932.

Ellin Kavanagh | EurekAlert!
Further information:
http://www.usc.edu
http://www.chla.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>