Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children’s brain development is linked to physical fitness

16.09.2010
Researchers have found an association between physical fitness and the brain in 9- and 10-year-old children: Those who are more fit tend to have a bigger hippocampus and perform better on a test of memory than their less-fit peers.

A bigger hippocampus in nine- and ten-year-old children appears to boost their performance on a relational memory task, said University of Illinois doctoral student Laura Chaddock. | Photo courtesy Laura ChaddockThe new study, which used magnetic resonance imaging to measure the relative size of specific structures in the brains of 49 child subjects, appears in the journal Brain Research.

“This is the first study I know of that has used MRI measures to look at differences in brain between kids who are fit and kids who aren’t fit,” said University of Illinois psychology professor and Beckman Institute director Art Kramer, who led the study with doctoral student Laura Chaddock and kinesiology and community health professor Charles Hillman. “Beyond that, it relates those measures of brain structure to cognition.”

The study focused on the hippocampus, a structure tucked deep in the brain, because it is known to be important in learning and memory. Previous studies in older adults and in animals have shown that exercise can increase the size of the hippocampus. A bigger hippocampus is associated with better performance on spatial reasoning and other cognitive tasks.

“In animal studies, exercise has been shown to specifically affect the hippocampus, significantly increasing the growth of new neurons and cell survival, enhancing memory and learning, and increasing molecules that are involved in the plasticity of the brain,” Chaddock said.

Rather than relying on second-hand reports of children’s physical activity level, the researchers measured how efficiently the subjects used oxygen while running on a treadmill.

“This is the gold standard measure of fitness,” Chaddock said.

The physically fit children were “much more efficient than the less-fit children at utilizing oxygen,” Kramer said.

When they analyzed the MRI data, the researchers found that the physically fit children tended to have bigger hippocampal volume – about 12 percent bigger relative to total brain size – than their out-of-shape peers.

The children who were in better physical condition also did better on tests of relational memory – the ability to remember and integrate various types of information – than their less-fit peers.

“Higher fit children had higher performance on the relational memory task, higher fit children had larger hippocampal volumes, and in general, children with larger hippocampal volumes had better relational memory,” Chaddock said.

Further analyses indicated that a bigger hippocampus boosted performance on the relational memory task.

“If you remove hippocampal volume from the equation,” Chaddock said, “the relationship between fitness and memory decreases.”

The new findings suggest that interventions to increase childhood physical activity could have an important effect on brain development, Kramer said.

“We knew that experience and environmental factors and socioeconomic status all impact brain development,” he said.

“If you get some lousy genes from your parents, you can’t really fix that, and it’s not easy to do something about your economic status. But here’s something that we can do something about,” Kramer said.

Editor's note: To contact Art Kramer, call 217-244-8373; e-mail a-kramer@illinois.edu; Laura Chaddock, e-mail lchaddo2@illinois.edu.

An abstract of the study, “A Neuroimaging Investigation of the Association Between Aerobic Fitness, Hippocampal Volume and Memory Performance in Preadolescent Children,” is available online.

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

Further reports about: Chaddock Illinois River Watershed MRI cognitive task physical activity

More articles from Life Sciences:

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

nachricht Warming temperatures threaten sea turtles
22.06.2017 | Swansea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

New 3-D display takes the eye fatigue out of virtual reality

22.06.2017 | Information Technology

New technique makes brain scans better

22.06.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>