Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Childbirth was already difficult for the Neanderthals

09.09.2008
Neanderthals had a brain at birth of a similar size to that of modern-day babies. However, after birth, their brain grew more quickly than it does for Homo sapiens and became larger too. Nevertheless, the individual lifespan ran just as slowly as it does for modern human beings.

These new insights into the history of human evolution are being presented this week in the journal «Proceedings of the National Academy of Sciences PNAS» by researchers from the University of Zurich.

Dr. Marcia Ponce de León and Prof. Christoph Zollikofer from the Anthropological Institute of the University of Zurich examined the birth and the brain development of a newborn Neanderthal baby from the Mezmaiskaya Cave in the Crimea. That Neanderthal child, which died shortly after it was born, was evidently buried with such care that it was able to be recovered in good condition from the cave sediments of the Ice Age after resting for approximately 40,000 years.

The only well-preserved find of a fossil newborn known to date provides new information on how, in the course of evolution, the very special kind of individual human development has crystallised. Dr. Marcia Ponce de León and Prof. Zollikofer reconstructed the skeleton on the computer from 141 individual parts. They discovered that the brain at the time of birth was of exactly the same size as a typical human newborn. It had a volume of about 400 cubic centimetres. However, the skeleton was considerably more robustly formed than that of a modern human newborn.

In order to clarify whether the head of a Neanderthal newborn baby, like today's human, still fits through the birth canal of the mother's pelvis, they reconstructed a female Neanderthal pelvis which had already been found in the 1930s. This enabled the process of birth to be simulated. The computer reconstruction shows that the birth canal of this woman was wider than that of a Homo sapiens mother, but the head of the Neanderthal newborn was somewhat longer than that of a human newborn because of its relatively robust face.

This meant that for the Neanderthals, the birth was probably about as difficult as it is for our own race. «The brain size of a newborn of 400 cubic centimetres is probably an evolutionary birth limit which had already been reached with the last common ancestors of human beings and Neanderthals» concludes Zollikofer. «That would mean that for the last 500,000 years, we have been paying a high evolutionary price in the form of birth problems for our large brain.»

To study the development after birth, the researchers examined not only the Mezmaiskaya newborn but also other Neanderthal children up to an age of approximately 4. It is astonishing that the Neanderthal brain grew even more quickly during childhood than that of Homo sapiens. Until now, one has assumed that the consequence of rapid growth was a shorter lifespan and high mortality under the motto of «live fast – die young». However, the new studies show that the Neanderthal brain indeed grew more quickly than our own, but on average, a larger volume had to be reached in adult age. The duration of brain growth is therefore the same for both kinds of human being.

The large brain brought consequences for the life history (pregnancy, puberty, life expectancy) of the Neanderthals. For children to develop a large brain in a short space of time, they need additional energy and nutrition from the mothers. The only mothers capable of providing this were those who had developed the necessary constitution themselves. They therefore had their first child a little later. If one now compares the entire life history of an average Neanderthal with that of a modern human being, a picture emerges which deviates significantly from existing doctrine: the development of the Neanderthals was just as slow as that of modern people, if not even a little slower.

Despite major physical differences between modern man and the Neanderthal since birth, both types actually obey the same restrictions which are forced upon us by the laws of physiology, development and evolution. «As far as birth, development of the brain and life history are concerned, we are astonishingly similar to each other», says Dr. Ponce de León.

Beat Mueller | alfa
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>