Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Childbirth was already difficult for the Neanderthals

Neanderthals had a brain at birth of a similar size to that of modern-day babies. However, after birth, their brain grew more quickly than it does for Homo sapiens and became larger too. Nevertheless, the individual lifespan ran just as slowly as it does for modern human beings.

These new insights into the history of human evolution are being presented this week in the journal «Proceedings of the National Academy of Sciences PNAS» by researchers from the University of Zurich.

Dr. Marcia Ponce de León and Prof. Christoph Zollikofer from the Anthropological Institute of the University of Zurich examined the birth and the brain development of a newborn Neanderthal baby from the Mezmaiskaya Cave in the Crimea. That Neanderthal child, which died shortly after it was born, was evidently buried with such care that it was able to be recovered in good condition from the cave sediments of the Ice Age after resting for approximately 40,000 years.

The only well-preserved find of a fossil newborn known to date provides new information on how, in the course of evolution, the very special kind of individual human development has crystallised. Dr. Marcia Ponce de León and Prof. Zollikofer reconstructed the skeleton on the computer from 141 individual parts. They discovered that the brain at the time of birth was of exactly the same size as a typical human newborn. It had a volume of about 400 cubic centimetres. However, the skeleton was considerably more robustly formed than that of a modern human newborn.

In order to clarify whether the head of a Neanderthal newborn baby, like today's human, still fits through the birth canal of the mother's pelvis, they reconstructed a female Neanderthal pelvis which had already been found in the 1930s. This enabled the process of birth to be simulated. The computer reconstruction shows that the birth canal of this woman was wider than that of a Homo sapiens mother, but the head of the Neanderthal newborn was somewhat longer than that of a human newborn because of its relatively robust face.

This meant that for the Neanderthals, the birth was probably about as difficult as it is for our own race. «The brain size of a newborn of 400 cubic centimetres is probably an evolutionary birth limit which had already been reached with the last common ancestors of human beings and Neanderthals» concludes Zollikofer. «That would mean that for the last 500,000 years, we have been paying a high evolutionary price in the form of birth problems for our large brain.»

To study the development after birth, the researchers examined not only the Mezmaiskaya newborn but also other Neanderthal children up to an age of approximately 4. It is astonishing that the Neanderthal brain grew even more quickly during childhood than that of Homo sapiens. Until now, one has assumed that the consequence of rapid growth was a shorter lifespan and high mortality under the motto of «live fast – die young». However, the new studies show that the Neanderthal brain indeed grew more quickly than our own, but on average, a larger volume had to be reached in adult age. The duration of brain growth is therefore the same for both kinds of human being.

The large brain brought consequences for the life history (pregnancy, puberty, life expectancy) of the Neanderthals. For children to develop a large brain in a short space of time, they need additional energy and nutrition from the mothers. The only mothers capable of providing this were those who had developed the necessary constitution themselves. They therefore had their first child a little later. If one now compares the entire life history of an average Neanderthal with that of a modern human being, a picture emerges which deviates significantly from existing doctrine: the development of the Neanderthals was just as slow as that of modern people, if not even a little slower.

Despite major physical differences between modern man and the Neanderthal since birth, both types actually obey the same restrictions which are forced upon us by the laws of physiology, development and evolution. «As far as birth, development of the brain and life history are concerned, we are astonishingly similar to each other», says Dr. Ponce de León.

Beat Mueller | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>