Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chickens 'One-Up' Humans in Ability to See Color

Researchers at Washington University School of Medicine in St. Louis have peered deep into the eye of the chicken and found a masterpiece of biological design.

Scientists mapped five types of light receptors in the chicken's eye. They discovered the receptors were laid out in interwoven mosaics that maximized the chicken's ability to see many colors in any given part of the retina, the light-sensing structure at the back of the eye.

"Based on this analysis, birds have clearly one-upped us in several ways in terms of color vision," says Joseph C. Corbo, M.D., Ph.D., senior author and assistant professor of pathology and immunology and of genetics. "Color receptor organization in the chicken retina greatly exceeds that seen in most other retinas and certainly that in most mammalian retinas."

Corbo plans follow-up studies of how this organization is established. He says such insights could eventually help scientists seeking to use stem cells and other new techniques to treat the nearly 200 genetic disorders that can cause various forms of blindness.

Scientists published their results in the journal PLoS One.

Birds likely owe their superior color vision to not having spent a period of evolutionary history in the dark, according to Corbo. Birds, reptiles and mammals are all descended from a common ancestor, but during the age of the dinosaurs, most mammals became nocturnal for millions of years.

Vision comes from light-sensitive photoreceptor cells in the retina. Night-vision relies on receptors called rods, which flourished in the mammalian eye during the time of the dinosaurs. Daytime vision relies on different receptors, known as cones, that are less advantageous when an organism is most active at night.

Birds, now widely believed to be descendants of dinosaurs, never spent a similar period living mostly in darkness. As a result, birds have more types of cones than mammals.

"The human retina has cones sensitive to red, blue and green wavelengths," Corbo explains. "Avian retinas also have a cone that can detect violet wavelengths, including some ultraviolet, and a specialized receptor called a double cone that we believe helps them detect motion."

In addition, most avian cones have a specialized structure that Corbo compares to "cellular sunglasses": a lens-like drop of oil within the cone that is pigmented to filter out all but a particular range of light. Researchers used these drops to map the location of the different types of cones on the chicken retina. They found that the different types of cones were evenly distributed throughout the retina, but two cones of the same type were never located next to each other.

"This is the ideal way to uniformly sample the color space of your field of vision," Corbo says. "It appears to be a global pattern created from a simple localized rule: you can be next to other cones, but not next to the same kind of cone."

Corbo speculates that extra sensitivity to color may help birds in finding mates, which often involves colorful plumage, or when feeding on berries or other colorful fruit.

"Many of the inherited conditions that cause blindness in humans affect cones and rods, and it will be interesting to see if what we learn of the organization of the chicken's retina will help us better understand and repair such problems in the human eye," Corbo says.

Kram YA, Mantey S, Corbo JC. Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics. PLoS One, Feb. 1, 2010.

Funding from the National Eye Institute supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

| Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>