Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chickens 'One-Up' Humans in Ability to See Color

17.02.2010
Researchers at Washington University School of Medicine in St. Louis have peered deep into the eye of the chicken and found a masterpiece of biological design.

Scientists mapped five types of light receptors in the chicken's eye. They discovered the receptors were laid out in interwoven mosaics that maximized the chicken's ability to see many colors in any given part of the retina, the light-sensing structure at the back of the eye.

"Based on this analysis, birds have clearly one-upped us in several ways in terms of color vision," says Joseph C. Corbo, M.D., Ph.D., senior author and assistant professor of pathology and immunology and of genetics. "Color receptor organization in the chicken retina greatly exceeds that seen in most other retinas and certainly that in most mammalian retinas."

Corbo plans follow-up studies of how this organization is established. He says such insights could eventually help scientists seeking to use stem cells and other new techniques to treat the nearly 200 genetic disorders that can cause various forms of blindness.

Scientists published their results in the journal PLoS One.

Birds likely owe their superior color vision to not having spent a period of evolutionary history in the dark, according to Corbo. Birds, reptiles and mammals are all descended from a common ancestor, but during the age of the dinosaurs, most mammals became nocturnal for millions of years.

Vision comes from light-sensitive photoreceptor cells in the retina. Night-vision relies on receptors called rods, which flourished in the mammalian eye during the time of the dinosaurs. Daytime vision relies on different receptors, known as cones, that are less advantageous when an organism is most active at night.

Birds, now widely believed to be descendants of dinosaurs, never spent a similar period living mostly in darkness. As a result, birds have more types of cones than mammals.

"The human retina has cones sensitive to red, blue and green wavelengths," Corbo explains. "Avian retinas also have a cone that can detect violet wavelengths, including some ultraviolet, and a specialized receptor called a double cone that we believe helps them detect motion."

In addition, most avian cones have a specialized structure that Corbo compares to "cellular sunglasses": a lens-like drop of oil within the cone that is pigmented to filter out all but a particular range of light. Researchers used these drops to map the location of the different types of cones on the chicken retina. They found that the different types of cones were evenly distributed throughout the retina, but two cones of the same type were never located next to each other.

"This is the ideal way to uniformly sample the color space of your field of vision," Corbo says. "It appears to be a global pattern created from a simple localized rule: you can be next to other cones, but not next to the same kind of cone."

Corbo speculates that extra sensitivity to color may help birds in finding mates, which often involves colorful plumage, or when feeding on berries or other colorful fruit.

"Many of the inherited conditions that cause blindness in humans affect cones and rods, and it will be interesting to see if what we learn of the organization of the chicken's retina will help us better understand and repair such problems in the human eye," Corbo says.

Kram YA, Mantey S, Corbo JC. Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics. PLoS One, Feb. 1, 2010.

Funding from the National Eye Institute supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

| Newswise Science News
Further information:
http://news-info.wustl.edu/

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>