Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cherry blossom tree blooms all seasons

15.02.2010
A new breed of cherry blossom tree that blooms all year round has been created by RIKEN scientists using heavy ion beams at RIKEN Nishina Center for Accelerated-Based Science.

The new breed blooms longer, produces more flowers and grows under a wider range of temperatures than existing cherry blossom trees, demonstrating the power of accelerator technology in horticulture.

To create the new breed, researchers used beams of carbon ions from the RIKEN Ring Cyclotron at the RI Beam Factory to induce mutations in branches from the cherry blossom tree known as Keiou-Zakura No. 13. The branches were grafted and cultivated to create the new breed, which has been aptly named ‘Nishina Otome’.

Unlike regular cherry blossom trees, Nishina Otome does not require a period of cold weather to trigger growth. As a result, the new tree is able to bloom all year round when cultivated indoors, and during autumn and spring when grown outdoors. Given sufficient exposure to low temperatures, it produces three times more flowers than the regular varieties, and its spring bloom lasts for twice as long.

The use of heavy ion beams to generate new breeds of plants by mutagenisis, an approach to horticulture unique to Japan, is drawing attention worldwide as a powerful alternative to conventional genetic engineering that is capable of shrinking breeding times to only a few years. The second breed of cherry blossom tree to be registered by RIKEN, the Nishina Otome hints at an exciting future for accelerator-based mutation breeding, one which opens the door to the design of plant varieties better able to cope with a changing environment.

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/roundup/6218
http://www.researchsea.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>