Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists teach computer program to model forces between atoms accurately

04.10.2017

A team of researchers from MIPT, Skoltech, and Dukhov Research Institute of Automatics, led by Artem Oganov, used a machine learning technique to model the behavior of aluminum and uranium in the liquid and crystalline phases at various temperatures and pressures. Such simulations of chemical systems can predict their properties under a range of conditions before experiments are performed, enabling further work with only the most promising materials. The research findings were published in the journal Scientific Reports.

Computer chemistry


This is a slider.

Credit: MIPT Press Office

Rapid advances in science over the last 100 years have resulted in the discovery of an astonishing number of organic and inorganic compounds, protein and lipid structures, and chemical reactions.

But with all these new structures and molecules, an increasing amount of time is necessary to study their makeup, biochemical and physical properties, as well as test the models of their behavior under various conditions and their possible interactions with other compounds. Such research can now be accelerated using computer modeling.

The force field approach is the currently dominant modeling technique. It makes use of a set of parameters describing a given biochemical system. These include bond lengths and angles, and charges, among others.

However, this technique is unable to accurately reproduce the quantum mechanical forces at play in molecules. Accurate quantum mechanical calculations are time-consuming. Besides, they only enable predictions of the behavior of samples that are at best several hundred atoms large.

Machine learning approaches to molecular modeling are of great interest to chemists. They enable models that are trained on relatively small data sets obtained by means of quantum mechanical calculations. Such models can then replace quantum mechanical calculations, because they are just as accurate and require about 1,000 times less computing power.

Progress made by machine learning tools modeling interactions between atoms

The researchers used machine learning to model the interactions between atoms in crystalline and liquid aluminum and uranium. Aluminum is a well-studied metal whose physical and chemical properties are known to scientists. Uranium, by contrast, was chosen because there are conflicting published data on its physical and chemical properties, which the researchers sought to define more accurately.

The paper details their study of such material properties as the phonon density of states, entropy, and the melting temperature of aluminum.

"The magnitudes of interatomic forces in crystals can be used to predict how atoms of the same element will behave under different temperatures and in a different phase," says Ivan Kruglov from the Computational Materials Design Laboratory at MIPT.

"By the same token, you can use the data on the properties of a liquid to find out how the atoms will behave in a crystal. This means that by finding out more about the crystal structure of uranium, we can eventually reconstruct the entire phase diagram for this metal. Phase diagrams are charts indicating the properties of elements as a function of pressure and temperature. They are used to determine the limits to the applicability of a given element."

To make sure that the data yielded by computer simulations is valid, they are compared to experimental results. The method used by the researchers was in good agreement with prior experiments. The information obtained with the approach based on machine learning had a lower error rate, compared to the modeling techniques using force fields.

In this study, the authors improve on their 2016 results in terms of the speed and accuracy of atomic system modeling using machine learning.

###

The study reported in this story was supported by the Russian Science Foundation.

Media Contact

Asya Shepunova
shepunova@phystech.edu
7-916-813-0267

 @phystech

https://mipt.ru/english/ 

Asya Shepunova | EurekAlert!

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>