Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists reach from the molecular to the real world with creation of 3-D DNA crystals

04.09.2009
New York University chemists have created three-dimensional DNA structures, a breakthrough bridging the molecular world to the world where we live.

The work, reported in the latest issue of the journal Nature, also has a range of potential industrial and pharmaceutical applications, such as the creation of nanoelectronic components and the organization of drug receptor targets to enable illumination of their 3D structures.

While scientists, including those involved in this study, have previously designed and built crystal structures, these compositions have been two-dimensional—that is, their axes are on a single plane— and are not the most complete representation of crystals.

To address this limitation, the research team, headed by NYU Chemistry Professor Nadrian Seeman, sought to design and build three-dimensional DNA crystals—a process that requires significant spatial control of the 3D structure of matter. The project also included researchers from Purdue University's Department of Chemistry and the Argonne National Laboratory in Illinois.

To do this, the researchers created DNA crystals by making synthetic sequences of DNA that have the ability to self-assemble into a series of 3D triangle-like motifs. The creation of the crystals was dependent on putting "sticky ends"—small cohesive sequences on each end of the motif—that attach to other molecules and place them in a set order and orientation. The make-up of these sticky ends allows the motifs to attach to each other in a programmed fashion.

Seeman and his colleagues had previously created crystals using this process. However, because these crystals self-assembled on the same plane, they were two-dimensional in composition. In the work reported in Nature, the researchers expanded on the earlier efforts by taking advantage of DNA's double-helix structure to create 3D crystals. The 2D crystals are very small—about 1/1000th of a millimeter—but the 3D crystals are between 1/4 and 1 millimeter, visible to the naked eye.

DNA's double helices form when single strands of DNA—each containing four molecular components called bases, attached to backbone—self-assemble by matching up their bases. The researchers added sticky ends to these double helices, forming single-stranded overhangs to each double helix. Where these overhanging sticky ends were complementary, they bind together to link two double helices. This is a common technique used by genetic engineers, who apply it on a much larger scale. By linking together multiple helices through single-stranded sticky ends, the researchers were able to form a lattice-like structure that extends in six different directions, thereby yielding a 3D crystal.

"With this technique we can organize more matter and work with it in many more ways than we could with 2D crystals," Seeman observed.

A promising avenue for the application of this approach is in nanoelectronics, using components no bigger than single molecules. Currently, such products are built with 2D components. Given the enhanced flexibility that 3D components would yield, manufacturers could build parts that are smaller and closer together as well as more sophisticated in design.

The scientists also expect that they can organize biological macromolecules by attaching them to these crystals. This can help in the development of drugs because macromolecules arranged in crystals can be visualized by a technique known as X-ray crystallography. By adding drugs to these crystals, their interactions with these biological components can be visualized.

X-ray diffraction data were collected from DNA crystals and their iodinated derivatives on beamlines X6A and X25 at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory in Upton, New York and on beamline ID19 at the Structural Biology Center at Advanced Photon Source in Argonne, Illinois.

Bob Sweet, a biophysicist and the leader of the group who run NSLS beamline X25, observed, "This is one of the neatest structures I've seen in years. It really connects biotechnology to nanotechnology. We've been helping these folks for over a dozen years, and they really hit the ball out of the park. It's beautiful!"

The research was supported by grants from the National Institute of General Medical Sciences, the National Institutes of Health, the National Science Foundation, the Army Research Office, the Office of Naval Research, and the W.M. Keck

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>