Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists move closer toward developing safer, fully-synthetic form of heparin

19.08.2008
Chemists are reporting a major advance toward developing a safer, fully-synthetic version of heparin, the widely used blood thinner now produced from pig intestines.

The U. S. Food and Drug Administration last spring linked contaminated batches of the animal-based product, imported from China, to more than 80 deaths and hundreds of allergic reactions among patients exposed to the drug for kidney dialysis and other conditions.

Described here today at the ACS's 236th National Meeting, the purer, non-animal version could improve the drug's safety and bolster regulatory control of its manufacture, the researchers say. Scientists expect demand for heparin, which prevents blood clots, to increase in the future due to rising rates of diabetes, heart disease, and other health complications linked to sedentary lifestyles. Global heparin sales total about $4 billion annually.

"With the problems associated with contaminated heparin produced from pig tissues in China, a non-animal source of this essential drug is gaining importance," says study co-author Robert J. Linhardt, Ph.D., a chemist with Rensselaer Polytechnic Institute in Troy, New York. "A safer version of the drug could result in less adverse effects and fewer deaths."

Heparin can be given by injection to prevent life-threatening blood clots during heart surgery and kidney dialysis. It also is used to clean intravenous lines used in those procedures. Because heparin is difficult to make in the lab from scratch, the drug's only source has been from pig intestines.

Linhardt points out that processing of pig intestines to extract the raw materials is often done in small, family-run workshops in China, which supplies about 70 percent of the world's heparin. Those mom-and-pop shops often fall outside the normal supervision and regulatory control standard in the pharmaceutical industry. The lack of oversight increases the risks of heparin contamination or adulteration with harmful chemicals, viruses, or other agents, he says.

"If heparin is prepared the right way, it should be consistent and safe, even from an animal source," says Linhardt, who was part of the team that identified the suspected chemical contaminant in the Chinese heparin. The contaminant, called oversulfated chondroitin sulfate, can cause life-threatening allergic reactions. Heparin supplies containing the contaminant have now been recalled.

Researchers have been trying for years to develop heparin production methods that don't require pig intestines. The first so-called total synthesis of heparin, developed in 2003 at the Massachusetts Institute of Technology (MIT), was not practical. It produced only minute batches of heparin — less than 0.000000035 ounces at a time — and could not be scaled up for commercial use, Linhardt says.

Working with Jian Liu, Ph.D., a medicinal chemist with the University of North Carolina-Chapel Hill, and Jonathan Dordick, Ph.D., a Rensselaer chemical engineer, Linhardt's team now has developed an alternative synthesis method that boosts heparin production a million times higher than the MIT technique. The scientists employed a patented biotechnology approach that uses powerful enzymes to string together the individual carbohydrate units that form the pure heparin polymer. "Our biotech version of heparin will be prepared in a controlled environment ensuring that it is pure and free of contaminants," Linhardt says.

So far, only small amounts of the new heparin have been produced in the laboratory using this technique, called "chemoenzymatic synthesis." But Linhardt reports that the new approach can be used to produce the drug on a larger scale suitable for industrial manufacture. Cost, dosing, and administration of the new drug should be the same as conventional, animal-based heparin, he notes.

Linhardt plans to begin testing the synthetic heparin on animals this summer. If these and other tests are successful, the new heparin could reach the consumer market in two to five years, he estimates. The National Institutes of Health provided primary funding for the project.

Charmayne Marsh | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>