Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists influence stem-cell development with geometry

18.03.2010
University of Chicago scientists have successfully used geometrically patterned surfaces to influence the development of stem cells. The new approach is a departure from that of many stem-cell biologists, who focus instead on uncovering the role of proteins in controlling the fate of stem cells.

"The cells are seeing the same soluble proteins. In both cases it's the shape alone that's dictating whether they turn into fat or bone, and that hasn't been appreciated before," said Milan Mrksich, Professor in Chemistry and a Howard Hughes Medical Institute Investigator, who led the study. "That's exciting because stem-cell therapies are of enormous interest right now, and a significant effort is ongoing to identify the laboratory conditions that can take a stem cell and push it into a specific lineage."

The UChicago team found that making cells assume a star shape promotes a tense cytoskeleton, which provides structural support for cells, while a flower shape promotes a looser cytoskeleton. "On a flower shape you get the majority of cells turning to fat, and on a star shape you've got the majority of cells turning into bone," said Kris Kilian, a National Institutes of Health Fellow in Mrksich's research group. The UChicago team published its findings in the March 1 Early Edition of the Proceedings of the National Academy of Sciences.

Mrksich cautioned that the method is far from ready for use in the harvest of stem cells for therapeutic use, but it does signal a potentially promising direction for further study.

Mrksich's research group has a long history of developing methods for patterning surfaces with chemistry to control the positions, sizes and shapes of cells in culture, and applying those patterned cells to drug-discovery assays, and studies of cell migration and cell adhesion.

Citation: "Geometric cues for directing the differentiation of mesenchymal stem cells," Proceedings of the National Academy of Sciences, March 1 Early Edition, by Kristopher A. Kilian, Branimir Bugarija, Bruce T. Lahn and Milan Mrksich.

Funding: National Cancer Institute and the National Institute of General Medical Sciences.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>